Software Patents: A Replication Study

German Poo-Caamarno
University of Victoria
Victoria, BC, Canada

gpoo@uvic.ca

ABSTRACT

Previous research has documented the legal and economic aspects
of software patents. To study the evolution in the granting of soft-
ware patents we reproduced and extended part of the empirical
study on software patents conducted by Bessen and Hunt. The
original study established a criteria to identify software patents,
and provided a look at the evolution of patents granted until 2002.
We present a simple approach to retrieve patents from the full text
database provided by the United States Patent and Trademark Of-
fice (USPTO), which is freely accessible. We also present the evo-
lution of software patents since the original study, and which we
also present separated by major technological firms. Our research
shows a continuous increase in the number of software patents
granted higher, both in number of patents granted (in absolute num-
bers) and in proportion of overall patents (in relative terms). The
relevance of studying the evolution of software patents relies in
the challenges to find prior-art, either for practitioners looking for
patenting as well as for examiners evaluating granting a new patent.

1. INTRODUCTION

There are four main types of protection for an intellectual prop-
erty: copyright, trade secrets, patents and trademarks. Today, the
software industry takes advantage of all of them. Source code is
copyrighted, often protected as a trade secret (when developers sign
non-disclosure agreements), companies trademark names and lo-
gos of the software they develop, and patents are used to protect
the algorithms and processes that the software implements.

Historically, copyright was the most common way to protect soft-
ware, mostly due to its simplicity. The moment a person writes
code, this person (or its employer) obtains copyright protection on
it. Registration is simple and inexpensive, and it is only necessary
if one party is to sue another party for copyright infringement. In
1980, the United States amended its copyright law to add software
programs are copyrightable material [4]. The European Union did
the same in 1991 with the Computer Programs Directive [5].

In the United States Apple Computer, Inc. v. Franklin Computer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

OpenSym ’15 August 19-21, 2015, San Francisco, CA, USA

(© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-3666-6/15/08. .. 15.00

DOI: http://dx.doi.org/10.1145/2788993.2789833

Daniel M. German

University of Victoria

Victoria, BC, Canada
dmg@uvic.ca

Corp [11] demonstrated that copyright was strong enough to pro-
tect a software. Legal cases, however, started to push the limits
of this protection. In Lotus Development Corp. v. Borland Inter-
national, Inc. [6] Lotus had sued Borland for copying the menu
hierarchy of Lotus 1-2-3. The major issue at hand was whether
copyright protection extended to the “look and feel” of the program
(the menus and their contents). The Supreme Court of the United
States ruled that the menu hierarchy of the Borland’s program was
a “method of operation” which cannot be protected with copyright.
One outcome of this case was that software companies started to
protect their intellectual property through patents [7].

As reported by Bessen and Hunt [3] there is no official definition of
software patent. The system to classify patents does not distinguish
if the underlying technology is software or not. However, it is im-
portant to set the research scope of the patents related to software.
Thus, Bessen and Hunt [3] define software patent as:

“Software patent involves a logic algorithm for pro-
cessing data that is implemented via stored instruc-
tions; that is, the logic is not “hard-wired". These
instructions could reside on a disk or other storage
medium or they could be stored in “firmware,” that is,
a read-only memory, as is typical of embedded soft-
ware. But we want to exclude inventions that do not
use software as part of the invention. For example,
some patents reference off-the-shelf software used to
determine key parameters of the invention; such uses
do not make the patent a software patent.”

This definition is claimed to be reasonably accurate in comparison
with the literature, and more accurate in terms of false positives
than the definition based on International Patent Classification [2].

Over time, the patents granted related to software have increased.
The timing seems consistent with legal changes that made easier to
obtain such patents. Software patents are dominated by industries
in the fields of computers, electronics, and instrumentation [3,7].

Software patents are difficult to find because the lack of a stan-
dardized and comprehensive scheme to classify them [10]. As a
consequence, software patents can be found classified in multiple
categories. The increase of patents granted—plus the complexity
of searching patents using keywords—makes the correct classifica-
tion of a software patent an interesting problem to tackle.

http://dx.doi.org/10.1145/2788993.2789833

2. RELATED WORK

Bessen and Hunt [3] performed an empirical study on software
patents. The study explored the effects on the patenting behavior
of public firms as a consequence of the shift experimented by the
federal courts in United States and the US Patent and Trademark
Office (USPTO) with respect to software patents. In the 1970s,
software algorithms were not patentable [7]. However, such posi-
tion started to shift gradually after the Supreme Court permitted the
the patenting of software algorithms in 1981, when ruled the cases
Diamond v. Bradley [12] and Diamond v. Diehr [13].

Graham and Mowery [7] studied the evolution of the intellectual
protection in United States software industry since software com-
panies started to appear in 1978. They explain the use of copyright
in the beginning, and then the increase of software patents once
they were allowed by the US Supreme Court in different cases dur-
ing the 1980s and 1990s.

Mulligan and Lee [10] wrote about the scalability issues on soft-
ware patents. They claim that some industries are unable to respect
other’s patent rights because it is not feasible to do so. Software
patents are not indexed or organized, which makes unfeasible to
look all patents in a particular technology. To look for prior-art,
patents lawyers have to search across all patents by using specific
keywords, inventors, patents assignees, or citation between patents.
One challenge is to guess the right keywords to find prior-art. An-
other challenge is to examine all patents that match the keywords,
which might not be feasable if the number of patents is big enough,
presenting scalability issues.

Several studies [7,9,10] state that one of the weaknesses of the
United States patent system regarding to software patents is the
granting of low quality patents, particularly when the access to
prior-art is limited, including access by the examiners [7,9]. A Low
quality patent is a patent that does not truly satisfy the definition
of patentable invention, that is, novel, non-obvious, and utilitarian;
hence a patent that should not have been granted.

Patents are considered a threat for software projects, particularly
for small companies and Free and Open Source Software (FOSS)
projects that might not have the economical nor legal support to ne-
gotiate in case of patent infringement. The existance of low quality
patents has lead to initiatives like Defensive Publications [1], to
encourage individuals and organizations to publish known inven-
tions that have not been patented, so they can become prior—art, and
therefore, it would prevent infringement claims for patents granted
afterwards [1].

The goal of this study is to replicate the work by Bessen and Hunt [3]
to better understand the evolution of software patents over time and
to bring their study up to date (by adding data from 2002 to 2014).

Thus, in this paper we address the following research questions:

RQ; Can we reproduce the results of Bessen and Hunt’s?

RQ> What is the evolution of software patents since Bessen and
Hunt’s study?

To answer RQ;, we searched software patents in the United States
Patent and Trademark Office (USPTO) database issued between
1976 and 2002, and compared our results against the original study
of Bessen and Hunt [3]. To answer RQ,, we extended the search

from 2002 to 2014.

3. STUDY DESIGN

3.1 Data Sources

Figure 1 depicts different data sources available to retrieve patents
from, and which were used by Bessen and Hunt [3]. NBER (Na-
tional Bureau of Economic Research) Patent Citation Data File [8]
is a public domain data set made available for research purposes. It
has been reported to have a reasonable match with Compustat data
source [3]. It contains patents granted from 1975 to 1999. Compus-
tat is a proprietary database of financial and statistical information,
it was used to collect information of firms investing in Research and
Development. CHI Research is a proprietary database that contains
matches between firms and patents [3]. Finally, USPTO database
is the canonical database of patents in United States. In this repli-
cation study we used the public data sources.

CHI
Research
A\ J
Y

Industries and top companies
+ Research and Development

Figure 1: Alternatives data sources used by Bessen and Hunt [3] to
retrieve data of patents.

3.2 Data collection

Bessen and Hunt describe an algorithm that allows the retrieval of
software patents from the USPTO database. The algorithm is no
other than a criteria to perform a keyword search in the USPTO
database. To develop the algorithm, Bessen and Hunt performed
a manual classification of 400 patents, and then refined—by trial
and error—a search criteria that matched the classification. The fi-
nal search criteria is shown in Listing 1. It contains the search to
utility patents (AP7/1), whose description contains either the key-
word software or the keywords computer and program. It excludes
patents likely to be related with electronic or electricity, whose
patent title (TTL) contains at least one of the keywords chip, semi-
conductor, bus, circuit, or circuitry. It also excludes those patents
whose description contains at least one of the keywords antigen,
antigenic, or chromatography.

SPEC/ (software OR (computer AND program))

AND APT/1

ANDNOT TTL/ (chip OR semiconductor OR bus OR
circuit OR circuitry)

ANDNOT SPEC/ (antigen OR antigenic OR
chromatography)

Listing 1: Search criteria used to query the USPTO patents
database.

In addition, we retrieved by year, using the filter issue date (IDT).
For example, ISD/($/$/2014) to retrieve the patents granted in 2014.

We used a script to query the USPTO Web site' using as input
the content in Listing 1, plus additional filters as needed, like year
(IDT/) or company (AN/). and then to scrape the Web page with
the results of our queries?. As the search engine did not provide the

Uhttp://patft.uspto.gov/netacgi/nph-Parser?%s

2The script used and data retrieved are available at http://calcifer.
org/research/software-patents

http://patft.uspto.gov/netacgi/nph-Parser?%s
http://calcifer.org/research/software-patents
http://calcifer.org/research/software-patents

number of matches per query, the script performed the pagination
to retrieve and count the results per page. To overcome the rate
limit per request of USPTO Web site, the script simulated an user
session, waiting a random number of seconds between queries.

4. RESULTS AND DISCUSSION

In this section we present and discuss the results with respect to the
research questions.

4.1 RQ;: Can we reproduce the results of Bessen

and Hunt’s?
Because software patents are a subset of utility patents, we col-
lected the query results for both software and utility patents, and
tabulate them as shown in Table 1. The table is split between the
results reported by Bessen and Hunt (from 2nd to 4th columns) and
this replication study (last 3 columns).

Bessen and Hunt (2007) Replication Study
i Software Utility Software Utility

Year Patents Patents % Patents Patents %

1976 765 70,226 1.1% 725 70,225 1.0%
1977 884 65,269 1.4% 838 65,269 1.3%
1978 897 66,102 1.4% 845 66,102 1.3%
1979 795 48,854 1.6% 746 48,854 1.5%
1980 1,080 61,819 1.7% 1,019 61,819 1.6%
1981 1,275 65,771 1.9% 1,210 65,771 1.8%
1982 1,402 57,888 2.4% 1,319 57,888 2.3%
1983 1,443 56,860 2.5% 1,358 56,860 2.4%
1984 1,939 67,200 2.9% 1,844 67,200 2.7%
1985 2,453 71,661 3.4% 2,357 71,661 3.3%
1986 2,657 70,860 3.7% 2,530 70,860 3.6%
1987 3,530 82,952 4.3% 3,384 82,952 4.1%
1988 3,495 77,924 4.5% 3,326 77,924 4.3%
1989 4,974 95,537 5.2% 4,751 95,537 5.0%
1990 4,704 90,364 52% 4,481 90,365 5.0%
1991 5,347 96,513 5.5% 5,080 96,511 5.3%
1992 5,862 97,444 6.0% 5,579 97,444 5.7%
1993 6,756 98,342 6.9% 6,425 98,342 6.5%
1994 8,031 101,676 7.9% 7,579 101,676 7.5%
1995 9,000 101,419 8.9% 8,571 101,419 8.5%
1996 11,359 109,645 10.4% 10,818 109,645 9.9%
1997 12,262 111,983 10.9% 11,534 111,984 10.3%
1998 19,355 147,519 13.1% 18,414 147,520 12.5%
1999 20,385 153,486 13.3% 19,456 153,488 12.7%
2000 21,065 157,595 13.4% 20,730 157,493 13.2%
2001 23,406 166,158 14.1% 23,073 166,034 13.9%
2002 24,891 167,438 14.9% 24,550 167,325 14.7%
2003 27,362 169,022 16.2%
2004 30,113 164,280 18.3%
2005 28,901 143,806 20.1%
2006 40,871 173,772 23.5%
2007 38,356 157,282 24.4%
2008 41,958 157,772 26.6%
2009 47,7740 167,349 28.5%
2010 64,480 219,614 29.4%
2011 69,029 224,504 30.7%
2012 84,243 253,155 33.3%
2013 96,634 277,835 34.8%
2014 109,281 300,713 36.3%

Table 1: Software patents and utility patents between 1976 and
2014, a comparison of results from Bessen and Hunt’s work and
our replication study.

The results were close, although we did not obtain exactly the same
figures. The differences in software patents vary from 40 (in 1976,
765 versus 725) to 941 per year (in 1998, 19,355 versus 18,414). In
spite of the difference, the tendencies in both results look similar.
We hypothesized that some patents might have been reclassified
between the time that both studies were performed. Further inspec-
tion is needed to understand the differences.

4.2 RQ,: What is the evolution of software patents

since Bessen and Hunt’s study?
To better understand the evolution of software patents since 2003,
we present Figure 2, which depicts both studies between 1976 and
2002, and from 1976 to 2014. Since early 1990s, there is a steady
increase of software patents granted.

120,000
------- Replication Study K
100,000 G
Bessen & Hunt (2007) K
’
80,000 .
’
(7] 4
E 60,000 G
-oa'—-) ’
© J
B 40,000 Fress
- -I
20,000 ___———-—/
0
© 0O O A ¥ © 0O O AN ¥ © ©®© O N ¥ © o O N
N IS © 0 ©© ©®© 0O O O O O ® © © © © O «w «w
o O O O O 0O 0O O O O O O O O O O O O O O
rrrrrrrrrrrr N N d d d & N

Figure 2: Comparison of results of software patents collected from
1976 to 2014.

40.0%
35.0%

—— Software / Utility patents

30.0%
25.0%
20.0%

Proportion

15.0%
10.0%

5.0%

0.0%

976
978
980
982
984
986
988
990
992
994
996
998
000
2002
2004
2006
2008
2010
2012
2014

Figure 3: Evolution of the proportion of software patents with re-
spect to utility patents from 1976 to 2014.

Bessen and Hunt [2,3] reported that early in the 1990s the pro-
cess for applying to utility patents had became more cost—efective.
However, the software industry has increased since then as well.
Figure 3 shows the share of software patents within utility patents.
A high proportion of utility patents correspond to software patents.
In 2014, 36.3% of the utility patents were software patents.

The share of software patents by large firms is another aspect to
consider. Figure 4 shows the evolution of new software patents
in a selected group of firms. We observe a steady increment of
software patents granted by company, with a peak in 2012. The
major firms obtaining software patents per year are IBM, followed
by Microsoft, Qualcomm, Google, and Canon. Further research is
needed to understand the slope in 2013, or high peak in 2012.

These findings open new research problems, such as, improving the
algorithm to identify software patents, assessing the quality of the
patents, identifying possible prior-art.

S. THREATS TO VALIDITY

In general, the following threats to validity exists for the described
approach.

10000

9000

8000

7000

6000

5000

Patents

4000

3000

2000

1000

s
&
f»

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001

Year

—— ADOBE
—— ALCATEL LUCENT
APPLE
CANON
cIsco
COMPUTER ASSOCIATES
—— DELL
EASTMAN KODAK
—EMC
FUJITSU
—— GOOGLE
—— HEWLETTPACKARD
—— HITACHI
1BM
—— INTEL
—— LG ELECTRONICS

e MATSUSHITA
w— MICROSOFT
MOTOROLA
m— NCR
el m— NOKIA
S —— NORTEL
s ORACLE
o [se] < 0 © N~ [ee] (2] o — N (] <
S E858E588¢S8 555355 rawmon
N o o () (Y] N N o () o N N o QUALCOMM

RESEARCH IN MOTION

Figure 4: Evolution of new software patents per year in (selected) firms from 1990 to 2014.

Internal validity. As stated by Bessen and Hunt [3], there is no
official definition of software patent by the USPTO. The definitions
have been built by researchers. For the purpose of this study, we
rely on the same definition provided by Bessen and Hunt.

Construct validity. The original work reproduced in this study con-
sisted of a manual classification of patents of 400 patents, that lead
to a refined search criteria that matches the classification. To our
knowledge, the resulting set of patents categorized are not publicly
available and, therefore, cannot be reproduced. Although an impor-
tant step, it goes beyond the purpose of this replication study, which
consisted in the automatic retrieval of potential software patents.
In addition, the increasing number of software patents may as well
stand for the fact that the query defined in the original work is be-
coming less precise as time passes. Future work should involve
experts on patents to revalidate the classification of patents.

External validity. This study only applies to patents granted in
United States and the criteria used for searching patents depend on
the classification provided by the USPTO. Although other coun-
tries have patent systems, they might have a different regime to
grant them. These factors prevent the generalization of the results
to other regimes different than United States patent system.

6. CONCLUSIONS

We studied the same data source that a previous study, although
our results were not exactly the same, they were close enough to
conclude that we were able to reproduce the tendency with similar
results. Considering these results, we can know retrieve the content
of each patent to apply different techniques to classify patents.

The increase of software patents grants can be interpreted to mean
that copyright might not be enough to protect software. Or at least,
it might be a perception among firms applying for software patents.

However, the number of patents does not say anything about quality
of the patents. For this, manual inspection might be needed. Data
mining techniques can be applied to assist the process.

7. REFERENCES

[1] Defensive Publications. http://defensivepublications.org/.
Visited on 2014-02-03.

[2] J. E. Bessen and R. M. Hunt. A Reply to Hahn and Wallsten.
Technical report, 2004.

[3] J. E. Bessen and R. M. Hunt. An Empirical Look at Software
Patents. Journal of Economics & Management Strategy,
16(1):157-189, Mar. 2007.

B. Bordoloi, P. Ilami, P. P. M. Jr., and K. Mykytyn.

Copyrighting computer software: the "look and feel”

controversy and beyond. Information & Management,

30(5):211 — 221, 1996.

[5] European Council. Computer Programs Directive, 1991.

[6] First Circuit. Lotus Development Corp. v. Borland

International, Inc., 1995.

[7] S.J. H. Graham and D. C. Mowery. Intellectual Property
Protection in the U.S. Software Industry. In Patents in the
Knowledge-Based Economy, chapter 7, pages 219-258. The
National Academies Press, 2003.

[8] B. H. Hall, A. B. Jaffe, and M. Trajtenberg. The NBER
Patent Citation Data File: Lessons, Insights and
Methodological Tools. Working Paper 8498, National
Bureau of Economic Research, October 2001.

[9] B. H. Hall and M. MacGarvie. The private value of software
patents. Research Policy, 39(7):994-1009, Sept. 2010.

[10] C. Mulligan and T. B. Lee. Scaling the Patent System. NYU
Annual Survey of American Law, Forthcoming, pages 1-28,
2012.

[11] Third Circuit. Apple Computer Inc v. Franklin Computer
Corporation, 1983.

[12] U.S. Supreme Court. Diamond v. Bradley, 1981.

[13] U.S. Supreme Court. Diamond v. Diehr, 1981.

[4

—

