
Determining the Geographical distribution of a Community
by means of a Time-zone Analysis

Jesus M.
Gonzalez-Barahona

Universidad Rey Juan Carlos
Madrid, Spain

jgb@gsyc.urjc.es

Gregorio Robles
Universidad Rey Juan Carlos

Madrid, Spain
grex@gsyc.urjc.es

Daniel
Izquierdo-Cortazar

Bitergia
Madrid, Spain

dizquierdo@bitergia.com

ABSTRACT
Free/libre/open source software projects are usually devel-
oped by a geographically distributed community of devel-
opers and contributors. In contrast to traditional corporate
environments, it is hard to obtain information about how
the community is geographically distributed, mainly because
participation is open to volunteers and in many cases it is
just occasional. During the last years, specially with the in-
creasing implication of institutions, non-profit organizations
and companies, there is a growing interest in having infor-
mation about the geographic location of developers. This is
because projects want to be as global as possible, in order
to attract new contributors, users and, of course, clients. In
this paper we show a methodology to obtain the geograph-
ical distribution of a development community by analyzing
the source code management system and the mailing lists
they use.

CCS Concepts
•Human-centered computing → Collaborative and
social computing;

Keywords
FLOSS; distributed development; time zones; open source
software;

1. INTRODUCTION
Although free/libre/open source software (FLOSS) can

be produced in many different ways, it is common prac-
tice nowadays that it is developed by a geographically dis-
tributed community. In this case, developers and other kinds
of contributors share code, suggestions, comments, bug re-
ports and discussions on the Internet, using specific-purpose
communication and development tools. These communities
have been subject of many research studies, some of them
focusing on how they manage to work in a distributed man-
ner [5, 15].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

OpenSym ’16, August 17 - 19, 2016, Berlin, Germany
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4451-7/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2957792.2957802

As communities have become more organized and insti-
tutionalized themselves, may it be through the creation of
foundations or other legal entities [9], or with the growing
interest in FLOSS by industrial companies, the information
of where developers, contributors and users are has gained
more importance. Some communities have shown interest
to include such type of information in their software devel-
opment dashboards1.

An example of a community with a long lasting interest
in learning about the geographic information of its develop-
ers is Debian. The Debian project maintains a map with
the location of their developers2. It shows how Debian is
an international project, primarily based in Western coun-
tries, with a certain balance between the number of North
American and European developers. This is an interesting
fact, for example, to choose the location of the DebConf,
the annual Debian conference. It is also useful for Debian
applicants to locate developers geographically close to them,
since their admission process [11] requires face-to-face con-
tact (for instance, to get the RSA key signed by an already
Debian developer).

As another case, Mozilla’s mission states that they want
that “people worldwide can be informed contributors and
creators of the Web”3, so information about virtual partic-
ipation is useful to design a global strategy. This type of
information can be used as well by companies to assess the
interest on their FLOSS products in certain geographic ar-
eas, and as information helpful in opening new markets.

But getting this information is not easy in most cases,
since there are little data sources to collect it. The goal
of this paper is to show a methodology to obtain the ge-
ographic distribution of a FLOSS community by means of
analyzing artifacts produced as side-product of the software
development effort. Therefore data will be extracted from
source code management systems (such as Git) and mailing
list archives, and don’t require the active collaboration of
developers.

The structure of the rest of this paper starts with the
presentation of related research. In Section 3, we detail the
proposed methodology. Then we explain how we apply it to
analyze the CloudStack project, as an illustrative case study
(Section 4). Finally, some conclusions are drawn and future
directions are discussed.

1For example, dashboards for some communities offered by
Bitergia, the company, can be found at http://bitergia.com/
dashboards/.
2https://www.debian.org/devel/developers.loc
3https://www.mozilla.org/en-US/mission/

2. RELATED RESEARCH
The coordinated development of a software product by

geographically distributed teams has been a matter of study
since the late 1990s [2]. The specific case of FLOSS com-
munities has been considered in several cases [5, 4, 14], even
with some attention to regions where FLOSS development
is rare, such as Africa [8].

Some of these efforts tried to estimate the location of the
global FLOSS development community, such as the study
of the geographical data obtained from the accounts of over
one million registered users at SourceForge [10, 7]. In other
cases, massive surveys were performed [6, 3]. Some of those
asked for the country of origin and the current country of res-
idence, in order to find developer migration patterns, finding
how talent is attracted by the United States from all over
the world [6].

The target for this paper is not to obtain an statisti-
cal estimate of the global FLOSS community, but to ob-
tain a picture as accurate as possible of the community of
a given project. Therefore, instead of performing massive
surveys or analyzing software development platforms with
many projects, we target project-specific tools. A similar
approach can be found in Bird et al. who have examined
how two large FLOSS projects perform their work in a dis-
tributed manner [1]. Related to the methods used in this
paper, Tang et al. propose a set of techniques for identify-
ing the country origin of mailing list participants [13], which
they use to perform a case study on the impact of global par-
ticipation on mailing lists communications in FLOSS projects [12].

3. METHODOLOGY
The analysis we propose is based on the traces left by

developers in the Git repositories and mailing lists, and it
can be easily extended to other data sources which log some
geographical information.

In the specific case of Git, each commit includes as a part
of its metadata some geographical information: a timezone.
It is set according to the timezone obtained from the con-
figuration of the computer where the commit took place,
usually the one of the committer. And it is kept as the
commit is merged in the main code base of the project. In
the case of mailing lists, similar information is maintained
in the message headers referring to dates. In particular, one
of them keeps the timezone of the machine originating the
message, usually that of the developer (or one configured
with its timezone of residence).

To obtain and use this information, we follow the following
four steps:

1. Identification of data sources. This process needs of
the understanding of the infrastructure used by the
community or project to analyze. In FLOSS commu-
nities, the required information is typically accessible
publicly. Since we focus on the development com-
munity, the relevant repositories are source code Git
repositories, and development mailing lists.

2. Extraction of information from data sources. The data
process extraction is done with CVSAnalY 4 (for Git)
and MLStats5 (for mailing lists), two FLOSS data ex-
traction tools that store the information they retrieve

4https://github.com/MetricsGrimoire/CVSAnalY
5https://github.com/MetricsGrimoire/MailingListStats

in a MySQL/MariaDB database. It is part of the Met-
rics Grimoire toolset6, built and maintained by our
team.

3. Analysis of the dataset. Given the amount of informa-
tion provided by CVSAnalY and MLStats, and that
not all of it is needed for this analysis, several filters
can be applied before starting the analysis. In the
case of Git, we ignore merge commits were ignored,
and commits performed by bots: merges commits are
in most cases performed automatically, or are not di-
rectly reflecting changes to the code, and bots do not
directly correspond to the activity of a human. In the
case of mailing lists, we ignore messages by bots, for
the same reasons.

4. Timezone analysis. We use GrimoireLib7, a library
specialized in the analysis of information organized in
SQL databases produced by Metrics Grimoire tools.
This library provides a framework to deal with all of
the resultant databases supporting the use of the out-
put of CVSAnalY and MLStats. For our purposes,
some new code was developed to perform the timezone
analysis. It groups activities depending on the speci-
fied timezone, as a time difference from GMT, in inte-
ger hours (non-integer time zones, such as GMT+5:30,
used in India, are rounded to their floor integer).

4. CASE STUDY: CLOUDSTACK
The CloudStack project8 is a FLOSS project under the

umbrella of the Apache Software Foundation. Its main goal
is to provide easy deployment and management of large net-
works of virtual machines. This project provides infrastruc-
ture as a service (IaaS) highly available and scalable.

The first traces of information about CloudStack activity
in their Git repositories start in August 2010. These reposi-
tories hold, at the end of 2015, close to 40,000 commits and
300 different developers with at least one commit of activity
during these years.

The methodology presented in the previous section was
applied to all these repositories.

We apply our methodology to two different sources from
CloudStack: Git source code management (SCM) reposito-
ries and mailing lists archives (MLs). From SCM reposito-
ries we can obtain geographic information about how dis-
tributed the team of software developers is. Data from MLs
provides information about the development community in
general, including contributors to activities different than
coding.

4.1 Analysis of SCM
We have grouped commits on a yearly basis, and showed

the results graphically for number of distinct authors and
number of commits for each period. The number of distinct
authors is a good proxy of the number of developers working
on the project, while the number of commits gives an idea
of the overall development activity.

Figure 1 shows the results for the early phases of the
project (year 2010). The horizontal axis references the de-
tected time-zone relative to UTC. As it can be observed

6https://github.com/MetricsGrimoire
7https://github.com/VizGrimoire/GrimoireLib/
8http://cloudstack.apache.org/

from the chart for authors, there is just one developer in
UTC+0 (the timezone for UK, Ireland and Portugal), and
three in UTC+5 (India). Almost all developers are located
in timezones corresponding to the U.S. West Coast (UTC-7
and UTC-8, for Winter and Summer time), with some very
likely in the U.S. East Coast (UTC-5 and UTC-4), although
these timezones are shared with some countries in South
America.

The chart for commits is even more revealing, which most
of the activity clearly focused on the U.S. West Coast: so
much, that the contributions from other regions are almost
negligible.

In summary, CloudStack was in 2010 a project that had
developers from several regions, but the main development
activity was clearly concentrated in the U.S. West Coast.

15 10 5 0 5 10 15

tz

0

5

10

15

20

25

30

a
u
th

o
rs

15 10 5 0 5 10 15

tz

0

500

1000

1500

2000

2500

co
m

m
it

s

Figure 1: Time-zone analysis for authors (top) and
commits (bottom) for the CloudStack Git reposito-
ries (2010).

Figure 2 shows the same analysis for CloudStack Git repos-
itories during 2014. As we can see from the authors chart,
their number increased significantly in those four years. In
addition, the project was more geographically distributed.
Now we can observe authors from all America time zones,
although the West Coast is still predominant. The three
European timezones (UTC+0 to UTC+2) have all over 20
developers, and India (UTC+5) has the maximum number
of authors, 55. Developers from other Asian areas, or from
Australia, are marginally present too (UTC+7 to UTC+10).

If we observe the commits chart in the same Figure 2,
we see that CloudStack development activity is performed
in three regions: the U.S. (with a peak in the West), Eu-
rope (with a peak in Eastern Europe, UTC+2) and India
(UTC+5).

4.2 Analysis of MLs
Figure 3 shows the results for the analysis of the Cloud-

Stack MLs for the year 2012. The vertical axis in the authors
chart represents provides the number of different authors,
while for the messages chart it corresponds to number of
messages. MLs in 2012 already showed a global distribu-
tion of participants of the CloudStack project, hinting that
authorship and activity in MLs possibly precedes develop-
ment activity. However, there are two interesting aspects
that require a specific analysis by themselves: the cases of
UTC+0 and UTC+8. UTC+0 includes authors and activity

15 10 5 0 5 10 15

tz

0

10

20

30

40

50

60

a
u
th

o
rs

15 10 5 0 5 10 15

tz

0

200

400

600

800

1000

1200

1400

1600

co
m

m
it

s

Figure 2: Time-zone analysis for authors (top) and
commits (bottom) for the CloudStack Git reposito-
ries (2014).

from countries such as UK, Ireland or Portugal, but as well
all those who configure their timezone as “GMT” in their
mail clients, such as for example many frequent travelers
do. Therefore, the data for UTC+0 has to be considered
with some precaution. In the case of UTC+8, which cor-
responds to China, Southeast Asia and Australia’s Western
Standard Time, among other territories, it is strange how
there is a large number of authors, but few messages have
been sent. This very corresponds to a much lower partici-
pation per person than in other regions.

15 10 5 0 5 10 15

tz

0

50

100

150

200

a
u
th

o
rs

15 10 5 0 5 10 15

tz

0

2000

4000

6000

8000

10000

12000

14000

m
e
ss

a
g
e
s

Figure 3: Time-zone analysis for authors (top) and
messages (bottom) for the CloudStack development
mailing list archives (2012).

Figure 4 shows the same analysis for MLs during 2014.
Again, UTC+0 is the most significant timezone, which heav-
ily biases results, thus limiting the possibility of performing
a proper analysis.

5. DISCUSSION AND CONCLUSIONS
We have shown how the proposed methodology allows for

the determination of the main geographical areas with ac-
tivity related to development. In the case of CloudStack we
could find out how it started in a certain region, and later
expanded to be globally distributed.

15 10 5 0 5 10 15

tz

0

50

100

150

200

250

300

350

400

450

a
u
th

o
rs

15 10 5 0 5 10 15

tz

0

5000

10000

15000

20000

25000

30000

35000

m
e
ss

a
g
e
s

Figure 4: Time-zone analysis for authors (top) and
messages (bottom) for the CloudStack development
mailing list archives (2014).

The methodology can be fully automated, and it uses as
the basis for its analysis data that is in general available or
can easily be obtained.

However, there are some limitations:

1. Some regions have a different time zone during Winter
and Summer. This can mangle the results, at least
visually.

2. The nature of timezones, comprising several regions,
makes it impossible to know to what specific zone be-
longs a developer. For example the Central European
time zone includes from Spain to Poland in Europe,
but many African countries as well.

3. The UTC+0 configuration problem in email clients
may cause a severe bias for this time zone, as it has
been shown in the analysis of the MLs in CloudStack.

4. Sometimes, obtaining the data for the mailing list anal-
ysis is not straightforward as the archives only store
the server date. To perform the analysis correctly, the
time and time zone data in the original messages has
to be preserved, and it not always is.

In summary, we have presented a methodology that can
be used to measure the geographic distributed of a FLOSS
project. It is based on data that is in general publicly avail-
able, as a side-product of software development processes.
With the help of a case study, we have explored how we can
infer information about the geographic dispersion of contrib-
utors to the project, and how it changes over time.

As future work we plan to apply this methodology to other
projects to find out if different patterns can be found.

Acknowledgments
The work of Jesus Gonzalez-Barahona and Gregorio Robles
has been funded in part by the Spanish Gov. under SobreVi-
sion (TIN2014-59400-R) and by Comunidad de Madrid un-
der eMadrid (S2013/ICE-2715). Daniel Izquierdo-Cortazar
is supported by the Spanish Gov., Torres Quevedo grant
(PTQ-12-05577). All three authors are supported in part
by the European Comission, under Seneca, H2020 Program
(H2020-MSCA-ITN-2014-642954).

6. REFERENCES
[1] Christian Bird and Nachiappan Nagappan. Who?

where? what? examining distributed development in
two large open source projects. In Mining Software
Repositories (MSR), 2012 9th IEEE Working
Conference on, pages 237–246. IEEE, 2012.

[2] Erran Carmel. Global software teams: collaborating
across borders and time zones. Prentice Hall PTR,
1999.

[3] Paul A David and Joseph S Shapiro.
Community-based production of open-source software:
What do we know about the developers who
participate? Information Economics and Policy,
20(4):364–398, 2008.

[4] Sebastian Von Engelhardt and Andreas Freytag.
Geographic allocation of oss contributions: the role of
institutions and culture. Jena Economic Research
Papers, 51, 2009.

[5] Daniel German. The GNOME project: a case study of
open source, global software development. Software
Process: Improvement and Practice, 8(4):201–215,
2003.

[6] Rishab A Ghosh, Ruediger Glott, Bernhard Krieger,
and Gregorio Robles. Free/libre and open source
software: Survey and study, 2002.

[7] Jesus Gonzalez-Barahona, Gregorio Robles, Roberto
Andradas-Izquierdo, and Rishab Ghosh. Geographic
origin of libre software developers. Information
Economics and Policy, 20(4):356–363, 2008.

[8] Hadja Ouattara, Jonathan Ouoba, and Tegawendé F
Bissyandé. Open source in africa: An opportunity
wasted? In e-Infrastructure and e-Services for
Developing Countries, pages 184–188. Springer, 2013.

[9] Dirk Riehle. The economic case for open source
foundations. Computer, 43(1):0086–90, 2010.

[10] Gregorio Robles and Jesus M Gonzalez-Barahona.
Geographic location of developers at sourceforge. In
3rd International workshop on Mining software
repositories, pages 144–150. ACM, 2006.

[11] Gregorio Robles, Jesus M Gonzalez-Barahona, and
Martin Michlmayr. Evolution of volunteer
participation in libre software projects: evidence from
debian. In 1st International Conference on Open
Source Systems, pages 100–107, 2005.

[12] Ran Tang, Ahmed E Hassan, and Ying Zou. A case
study on the impact of global participation on mailing
lists communications of open source projects. Proc.
KCSD 2009, pages 63–76, 2009.

[13] Ran Tang, Ahmed E Hassan, and Ying Zou.
Techniques for identifying the country origin of
mailing list participants. In Reverse Engineering,
2009. WCRE’09. 16th Working Conference on, pages
36–40. IEEE, 2009.

[14] Sebastian von Engelhardt, Andreas Freytag, and
Christoph Schulz. On the geographic allocation of
open source software activities. Technical report, Jena
economic research papers, 2010.

[15] Liguo Yu, Zhong Guan, and Srini Ramaswamy. The
effect of time zone difference on asynchronous
communications in global software development.
International Journal of Computer Applications in
Technology, 53(3):213–225, 2016.

