WikiWiki Weaving Heterogeneous Software Artifacts

Ademar Aguiar
FEUP, Universidade do Porto
INESC Porto
Rua Dr. Roberto Frias s/n
4200-465 Porto, Portugal

ademar.aguiar@fe.up.pt

ABSTRACT

Good documentation benefits every software development
project, especially large ones, but it can be hard, costly,
and tiresome to produce when not supported by appropriate
tools and methods.

The documentation of a software system uses different
artifacts, namely source code, for low-level internal doc-
umentation, and specific-purpose models and documents,
for higher-level external documentation (e.g. requirements
documents, use-case specifications, design notebooks, and
reference manuals). All these artifacts require continual
review and modification throughout the life-cycle to preserve
their consistency and value.

Good software documents are often heterogeneous, i.e.,
they combine different kinds of contents (text, code,
models, images) gathered from separate software artifacts,
a combination usually difficult to maintain as the system
evolves over time, considering that source code, models
and documents are typically produced and maintained
separately in multiple sources using different environments
and editors.

This paper presents a wiki that helps on quickly weaving
different kinds of contents into a single heterogeneous
document, whilst preserving its semantic consistency. The
fundamental goal of this wiki (XSDoc Wiki) is to reduce the
development-documentation gap by making documentation
more convenient and attractive to developers. An example
taken from the JUnit framework documentation helps to
illustrate the features more relevant to do such weaving.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environ-
ments; 1.7.2 [Document and Text Processing]: Doc-
ument Preparation— Hypertexzt/Hypermedia, Markup Lan-
guages

General Terms

Wiki-based software documentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WikiSym ’05, October 16-18, San Diego, CA, U.S.A.

Copyright 2005 ACM 1-59593-111-2/05/0010 ...$5.00.

Gabriel David
FEUP, Universidade do Porto
INESC Porto
Rua Dr. Roberto Frias s/n
4200-465 Porto, Portugal

gtd@fe.up.pt

Keywords

Software documentation, web-based documentation, wiki

1. INTRODUCTION

Although not always recognized, documentation plays a
central role in many software development tasks. Most of the
development effort is spent on formalizing information, i.e.,
on reading and understanding requirements, specifications,
and other informal documents, with the intent of producing
concrete source code and models.

Good software documentation usually provides multiple
views of a system (static, dynamic, external, internal)
at different levels of abstraction (architecture, design,
implementation). Depending on the concrete aspect
to document, it may be convenient to use and mix
contents represented in different notations (text, code,
models, images) gathered from different types of artifacts
(requirements documents, use-case specifications, design
notebooks, reference manuals, source code files, and model
files).

As a result of this complexity, software documentation
usually results hard, costly, and tiresome to do, especially
when not supported by appropriate tools and methods.

This paper presents a wiki (XSDoc Wiki) that addresses
the problem of gathering different kinds of contents from
separate software artifacts and weaving them together into
a single document — here called an heterogeneous software
artifact — whilst ensuring the semantic consistency between
the contents.

After a brief overview of the most relevant approaches to
the problem of combining source code and documentation
in a single artifact, namely literate programming and its
alternatives, we present our wiki-based approach based on
the XSDoc Wiki.

Along the paper, it will be used the article ”JUnit: A
Cook’s Tour” [6], part of the JUnit’s framework documenta-
tion, as an example of an heterogeneous document, hereafter
referred in this paper as the ”JUnit cook’s tour”. This
article explains how the framework itself is constructed and
presents its goals, describes its design in terms of patterns,
and its implementation as a literate program, for which
it interleaves text with several source code fragments and
models (Figure 1). This example will help to illustrate the
pros and cons of each of the possible approaches and show
how to use the XSDoc Wiki to create, integrate and present
contents.

The paper concludes with considerations about the pros
and cons of our wiki-based solution.

2. SOFTWARE DOCUMENTATION

The software artifacts produced during development can
be categorized in source code, models, and documents, all of
which require continual review and modification throughout
the life-cycle in order to preserve its consistency and value.

Typically, these artifacts are cooperatively produced and
maintained in separate sources by different team elements,
for which they often use different environments and editors,
namely text editors, source code editors, model editors, and
document editors.

This diversity of tools often requires constant switching
between working environments and results inappropriate to
maintain the semantic consistency between the artifacts, as
it disturbs developers and originates process inefficiencies.

2.1 Internal and External Documentation

The understanding of a software system can be doc-
umented internally in the source code or externally in
documents.

Typical internal documentation captures the understand-
ing of a program, preserving it over time, but is limited
to low-level textual explanations usually included in source
code comments that are not convenient to document global
system understanding, i.e., one that crosses several sections
of a software system.

On the other hand, higher-level external documentation
is capable of capturing the components and connectors of
an architecture and the interactions of cooperating classes
but the consistency between external documents and source
code can be difficult to maintain as the system evolves over
time.

The JUnit cook’s tour (Figure 1) of our example falls
in this last category of external documentation: it is a
standalone document, is structurally independent of the
source code, and is intended to capture the design and
implementation of JUnit.

As we will see, this external document suffers from the
typical problem of inconsistency with source code, which,
however, in this case is not very problematic because only
the understanding of the JUnit’s implementation is partially
affected, and the understanding of its design is practically
not affected.

Unit A Cook's Tour

1. Introduction

In an eatlier atticle (see Test Infected: Programmers Love Writing Tests, Java Report, July 1998, Volume 3, Number 7),
we described how o uss simpls framewark o write repeatable tests. In this article, we will take a pesk under the
covers and show you how the framework itself is construsted

Wie carefully studied the JUnit framework and reflected on how we constructed it. We found lessons at many
different levels. In this article we will try communicate them all at once, a hopeless task, but at least we will do it in the

cor Tostmtton Forth pposesof o tion of & piece of software with proven vatue
i

e o By TstCas i st s, o f e, you ol oy cprrle. Thee goals will reappesr in many small details during the

prese; his, we present the design and implementation of the framework. The
design tise,
conch e 0t

Figuse 3 shows our next design snapshol.

) TestCase

ot sninitneo, [restomott | nfroaony
nunTes)
1 K rameter | setlp()
| Cotlocting Parameter [a0
To lstat th evoltion of Ui, we use dingramethat show on
Seeoool - Figute 3: TestResult applies Collecting Parameter
-7 T
source code - - -~ M

models ---~

Figure 1: Example: the article ”JUnit: A Cook’s Tour”.

2.2 Literate Programming Approach

The literate programming approach [19] is a possible
solution to the problem of having source code and docu-
mentation always consolidated. The technique was invented
by Donald Knuth and involves writing documentation and
code in a single source document (verisimilitude), psycholog-
ically organized for comprehension by humans rather than
computers.

Literate documents are tangled to produce computer
understandable code, and woven to produce human readable
and comprehensible typeset documents (Figure 2). The
technique provides significant incentives for developers to
document while they code, potentially leading to programs
of higher quality and maintainability.

literate document -~ __
" Literate programming system * java *.class
documentation chunk

/ Java
pOY compiler
Fmgrammerl’y' eme | pdfLaTeX I
cookstour.web processor ||

code chunk y %
cookstour.tex cookstour.pdf,
cookstour.htm,

etc.

A 4

tangle

Figure 2: Literate Programming approach.

Despite its advantages, the technique is not widely
used. This is mainly due to the integration difficulties
of literate programming tools in mainstream development
environments, but not exclusively:

e it requires the combined use of three languages, a
programming language, a documentation language
and an interconnection language;

e it introduces too much overhead for small programs;

e the format of literate documents can be complex, what
seriously compromises their on-screen readability and
understandability during development;

e and most importantly, the organization of the source
code seen by the compiler is different from the original,
as written by the programmer, what often causes
integration problems with tools that directly analyse
and manipulate source code files, such as integrated
development environments (IDEs), debuggers, code
generators, reverse-engineering tools, and refactoring
tools.

For example, to produce the JUnit cook’s tour, we
would need to start by writing a literate document (e.g.
cookstour.web), containing the text and the source code
fragments used, organized in the way we would prefer.
After being processed by the tangle and weave programs we
would have the Java source code files (e.g. TestCase. java,
TestSuite. java, etc.) the TEX files (e.g. cookstour.tex),
and then the compiled program and final document.

As mentioned before, one of the biggest problems of
literate documents to programmers is that the source code
files are not primary artifacts, which programmers actually
write, but derived artifacts, automatically generated, not
intended to be edited or changed by hand or any tool
external to the literate programming system.

In short, the literate programming approach is very
elegant and effective but it often lacks real world usage by
ordinary programmers and teams who have not themselves
designed the tools [24].

Alternative documentation approaches to literate pro-
gramming can be classified into single source approaches
and multiple source approaches.

2.3 Single Source Approach

In the single source approach, code and documentation
are integrated together in a single file, so no consistency
problems are possible between them as there is no replication
of contents in the whole documentation bundle.

The Sun’s Javadoc utility [26, 20] is an example of a
single source approach that weaves Java source files to
produce interface documentation in HTML using simple
Java commenting conventions (Figure 3). Another very
popular example of tool that uses this single source approach
is the Doxygen tool [28].

Single source system

Interface
\ web document
foo java ;

&

programmer = 7

» javadoc

documentation

Figure 3: Single source approach.

This kind of tools, like Javadoc and Doxygen, cannot be
considered literate programming tools because the structure
of the documentation they can produce is restricted to
follow the code’s structure, therefore lacking the support
for psychological arrangement of the documentation.

For example, this kind of approach is not convenient to
produce the JUnit cook’s tour because the structure of the
document doesn’t fit in the code of any single class, as it
crosscuts several classes.

2.4 Multiple Source Approach

Multiple source approaches maintain documentation and
code in separate files (Figure 4).

Due to the physical separation of code and documents,
documenters usually combine the contents of both kinds of
artifacts by copying source code into document editors, or
by referring to a specific range of lines of a program file.
But, as soon as the code changes, the two artifacts become
inconsistent.

foo.java Multiple source system

E code Fhunk web dr.)/:ument
integrator > pdf
Vi processor

programmer y
foo.pdf

documentation chunk

foo.doc

Figure 4: Multiple source approach.

Traditional documentation written externally to source
code is the most common example of such technique.

For example, we can easily write the JUnit cook’s tour
using a simple text editor, or HI'ML editor, and copy-paste

the fragments of code from source code files into it. However,
very soon this would lead to inconsistencies between the
document and the source code base, as actually happens in
the JUnit cook’s tour with some fragments of the TestCase
class (e.g. the class definition).

Unless these inconsistencies are not considered problem-
atic, they must be avoided. Without adequate tool support,
developers often postpone the act of documenting from the
right moment to the last moment, to reduce the effort
of manually preserving the semantic consistency between
documents and code.

Considering that the most complete mental model of the
problem understanding and design of a solution is formed
by the developer at implementation time, most of this
understanding is often lost in the code, or in the developers
head if it is not adequately documented at the right moment,
thus requiring a large effort to recover it later.

More sophisticated systems, such as DOgMA [25] and Elu-
cidators [22, 23], simulate the verisimilitude characteristic of
literate programming with tools that automatically manage
the relationships between code and documents. The most
typical problem with this kind of tools is that the edition of
code and documents outside their specific environments is
often not convenient, a serious obstacle for easy integration
in mainstream development environments.

2.5 XML-based Documentation

The hierarchical nature of XML documents is very
useful to implement structuring mechanisms for software
documents. An evidence of this, is the diversity of work
applying XML specifically to software documentation, which
include the following, to mention only a few of the more
relevant to this paper: representations of source code
(JavaML [2, 5], cppML [21], srcML [10]), UML [14],
mechanisms to integrate heterogeneous documents from
different sources [16, 15, 4], and literate programming
systems [31, 9].

XML is an open format, with many standards, and it
provides powerful querying capabilities with standard tools
widely available in many platforms, such as XSLT [33] and
XQuery [34]. Therefore, XML is definitely a very important
technology to consider when looking for solutions to contents
interoperability and combining heterogeneous contents of
software documents.

The JUnit cook’s tour is an example of a document that
can be produced in XML (e.g. XHTML) with less extra
effort, when compared to its HT'ML version, but with some
additional advantages in terms of querying and processing
capabilities of their contents. For example, if the Java source
code fragments are represented in XML using JavaML 2.0
[2], it would be simple to add full hyperlinking capabilities
to each source code symbol, improving its navigability both
to internal and related external contents and documents.

2.6 Web-based Documentation

Most of the documentation now delivered with software
systems is web-based. @~ Web-based documentation has
several advantages: low cost, immediate accessibility,
always up-to-date information, search and query facilities to
quickly locate information, attractive presentation, multiple
navigation, and multimedia. Effective and attractive web-
based documentation increases the speed with which users
acquire proficiency.

Although not being so proeminent anymore, the paper-
format still retains its own place and importance: it is
tangible, customizable, more comfortable to read off-line
and off-screen, and is calm. Research revealed that people
retain more if the information is presented as printed text
rather than displayed on a screen.

2.7 Wiki-based Documentation

One of the problems of producing web-based documenta-
tion is that web browsers are not (yet) capable of editing
pages and they still do not support the rich structuring,
navigation, and annotation features of hypertext documents
[30].

A wiki [12] is a very simple and appealing collabo-
ration tool capable of presenting and editing web-based
information using a simple web browser. Wiki documents
have several good properties: they are open, can evolve
incrementally and organically, are easy to edit and organize,
promote convergence of contents and consistency of terms,
are tolerant, and are easily observable by other users.

Wikis normally provide a very simple markup language
to support text formatting and a simple mechanism based
on wiki names (e.g. AnExample, or WikiName) to
automatically link pages. Despite its simplicity, wiki names
are very powerful because they provide a dynamic-linking
mechanism [8, 7], where the link targets are not statically
defined, but only calculated on the fly, on page load-time,
based on contextual information, thus supporting the notion
of adaptive web pages. Other kinds of linking can be defined
using lexical conventions.

There are a lot of wikis available to use and install.
Mainly due to their attractiveness, especially in the software
community, they are frequently used to produce informal
software documents: drafts of designs and implementations,
design-trade-off discussions, requirements gathering, etc.

Among the many different implementations of wikis, we
can find some enhanced with specific features to support
activities of software development, namely: bug tracking,
tests, and source code formatting [11, 17, 27, 29].

In terms of features specific for source code, the existing
wikis simply support language-specific formatting of text,
either directly written or copy-pasted from source code files,
marked-up as code of a specific language (e.g. Java, C++,
SQL, etc.), a solution that surely leads to inconsistencies as
soon as the code changes. Among the already existing, no
wiki was found supporting features to preserve the semantic
consistency between source code and documentation to the
extent possible by the software documentation approaches
described before, namely the literate programming and the
multiple source approaches.

In terms of features to support UML, the SnipSnap wiki
[17] has a nice support for sketching UML diagrams.

It is our belief that a wiki specifically enhanced to
document software, easy to integrate in open development
environments, provides incentives for developers to docu-
ment what they need, when they need, be it before, while,
or after implementation. Therefore, we claim that wikis are
a very promising tool to support software documentation.

3. XSDOC WIKI

Considering the advantages and disadvantages of the
several software documentation approaches previously pre-
sented, we have devised a wiki-based approach to weave and

keep in-sync source code, models, and documents.

Our approach is a multiple source approach that combines
the advantages of the Knuth’s approach, using a kind
of reverse literate programming [18], and the attractive
hypertext capabilities of wiki and XML technologies. The
approach was implemented and tested in the XSDoc Wiki [3,
1], a wiki extended with several features to make convenient
the agile documentation of object-oriented software, which
proved to have a good real world usage.

3.1 Overview of XSDoc

XSDoc is an open and extensible documentation infras-
tructure based on wiki and XML technologies that ensures
the semantic consistency between different kinds of contents,
namely source code, models, and documents.

In addition to the wiki, the XSDoc infrastructure is
composed by plugins for seamless integration in open IDEs
(currently exists a simple one for the Eclipse IDE [13]),
and a set of document templates, markup languages, and
converters of different kinds of contents to and from XML.
Figure 5 shows the key components of XSDoc as well as their

interconnections.
Web

Java, C++,
and UML
editors

XSDoc plugin
for IDEs

external I
contents

XSDoc infrastructure

Wiki I
contents

Converters
to XML from XML

Contents
integration Contents
extraction

XML contents
repository

Wik, HTML,
Converters and PDF

files

XSDoc
Configuration

Creation Management Publishing Presentation

Figure 5: XSDoc architecture.

XSDoc was created to overcome the typical limitations
of existing literate programming systems and alternative
techniques used to solve the semantic consistency problem
of software documentation, namely tools interoperability,
extensibility, and integrability of heterogeneous contents
(not only source code) [1].

XSDoc aims at closing the gap between development
and documentation to make the activities of documenting
more convenient and attractive to developers. XSDoc
assists developers on documenting while they code and
design, even in development environments very restrictive
to documentation activities. Taking advantage of the wiki
front-end, XSDoc provides a simple cooperative web-based
environment for the creation, integration, publishing and
presentation of software documentation.

Wiki-based software documentation is the key idea
behind XSDoc. The idea was previously evaluated in
earlier prototypes and was considered very attractive for
developers. As a result, XSDoc combines the best features
of the previous prototypes and an evolved architecture, more
flexible and easier to extend.

The current implementation of XSDoc supports the
integration of source code in Java and C+4, UML
diagrams via graphic files, plain text documents, and XML
documents. Under development is the support to UML

diagrams via XMI, and source code in C#, AspectJ, and
PL/SQL languages.

3.2 Support for Software Documentation

The XSDoc Wiki was developed using the VeryQuickWiki
engine [11] as a starting base, which was then extended
with several features to make convenient the edition and
visualization of typical software documentation contents,
including the following:

e linking and inlining source code fragments and UML
diagrams;

e instantiation and validation of XML documents;
e access to version control systems repositories;
e easy addition of support for new styles of documents;

e and browsing controls to help on rendering contents
according to user preferences.

Probably, the most important extensions to a typical
wiki are the extension of the automatic linking and inlining
mechanisms, originally restricted to wiki pages, to support
also linking to source code, models and structured contents.

To be flexible, the XSDoc Wiki can be plugged with new
styles of documents (e.g. use-cases, patterns, requirements).
A XSDoc plugin typically includes: a document-template,
a set of converters to map that style of document to and
from XML, if necessary, a declaration of the elements to be
parsed for automatic linking of wiki names, and some lexical
rules to use during the automatic linking phase.

When properly configured and integrated in a specific
development environment, the XSDoc Wiki promotes the
collaboration of technical and non-technical people on the
incremental edition and revision of software documents.
Additionally, it ensures high availability of contents (always
online), uses simple features, provides automated archiving,
and only requires a simple web browser, a tool currently
very easy to integrate in the majority of development
environments.

3.3 XML Processing

As most of the documentation contents can be comfort-
ably edited and linked using the wiki, most of the contents
will reside on wiki pages stored in a contents repository, be
it the file system, a version control system, or a database.

As source code programs and UML diagrams need special
processing, they must be converted from their original
format to XML using XSLT transformers, that convert them
to specific vocabularies, namely JavaML 2.0 [2], Doxygen
[28] and SVG/XMI vocabularies.

At a later stage, the contents are filtered and formatted
to be published and presented. Currently, XSDoc outputs
HTML files for web-based browsing, and PDF files for
high-quality printing.

3.4 Contents Integration

The components of XSDoc are closely integrated, both in
terms of functionality and of the information they exchange.
To merge and preserve the semantic consistency between
heterogeneous kinds of contents, it is usually required
an integration language, in addition to the languages or
notations of the contents to integrate. For example, to

integrate Java source code with TEX, literate programming
systems use a third language, often a macro language, to
specify how the Java contents are woven in the TEX code.

The integration language used in XSDoc is the markup
language of the wiki, which is very simple to use and learn.
Source code, UML models and structured documents are
integrated using a multiple source approach, what means
that source code and documentation reside in separate files.
While this separation preserves source code files and UML
files, it requires a way of managing the relationships between
their contents.

In addition to the hyperlinking mechanisms provided by
wikis, XSDoc provides two dynamic mechanisms to integrate
and synchronize the possible kinds of document contents
(source code, UML diagrams, XML files) using simple lexical
conventions easy to learn and use. The mechanisms are
inlining of contents and linking to contents.

3.5 Inlining Heterogeneous Contents

The inlining of contents is possible through the use of
predefined tags for each kind of contents. To inline Java
source code with the XSDoc Wiki, we can use the tag
[<javaSource>] and a Javadoc reference to the fragment
desired. Other tags are provided for C++ source code
[<cppSource>], UML diagrams [<uml>], and text from wiki
topics [<include>].

For example, the text below is rendered by XSDoc Wiki
to the source code fragment corresponding to the method
run() of class junit.framework.TestCase, with all its
comments removed and showing only its first and last lines.
Here is the template method,
initially named run and renamed as runBare:

[<javaSource>]
junit.framework.TestCase#runBare (); comments=no;

[</javaSource>]

The text above produces a wiki page partially shown
below in Figure 6.

Here is the template method, initially named run and renamed as runBare:

[4= junit framework TestCase#runBare) method */
public void runBare() thraws Throwable {
setln(); LinkingtoJava ___-*"

try { source code
runTest{);

¥
finally {
tearDown();
¥
¥

~-__ InliningJava
source code

Figure 6: Inlining and Linking to Java source code.

3.6 Linking to Heterogeneous Contents

In addition to the possibility of including source code
and UML contents in a wiki document, the XSDoc Wiki
also provides the possibility of linking to such kinds of
contents. The definition of links is possible through the
use of wiki names and references with predefined formats.
Similarly to the inlining, to link to Java source code with
the XSDoc Wiki, we can use the prefix javaSource: and a
Javadoc reference to the fragment desired. Other prefixes
are provided for C++ source code (cppSource:), and UML
diagrams (uml:).

For example, the text below is rendered by XSDoc Wiki
as a link to the source code of the method runBare () of class
junit.framework.TestCase.

Here is the template method,
initially named run and renamed as

[[javaSource: junit.framework.TestCase#runBare ()] [runBare]]:

The text above produces the link shown in the web page
of Figure 6.

Having presented the features of XSDoc Wiki most
relevant to the problem of weaving heterogeneous software
artifacts (inling and linking), it is easy to conclude that they
are very simple to use, and its basics can be learned very fast
by people already familiar with the use of a web browser.

4. WEAVING EXAMPLE

The XSDoc Wiki will now be applied to the JUnit cook’s
tour, as an example to illustrate how it can be used to
create, integrate and present the different kinds of contents
involved.

4.1 Creating and Integrating Contents

The creation of documentation contents can be done
internally with the XSDoc Wiki using a web-based
collaborative environment, or externally with editors not
included with XSDoc. FEzternal contents, e.g. source code
contents and UML diagrams, always require the use of
external editors.

To help on the creation of normalized documents, it is
possible to use template documents, which can be associated
with specific topic name patterns, thus being automatically
instantiated at topic creation time. For example, the wiki
names ending in Pattern can be configured to be associated
with the template DesignPattern.

Save | Cancel | Append this template:l--No template-- vl Append ISpaces-to-t‘

*test scripts. " ;I

If we want to make manipulating tests easy, we have to make them objects. This
takes a test that was only implicit in the developer's mind and rakes it concrete,
supporting our goal of creating tests that retain their value aver time. At the same
timne, object developers are used to, well, developing with objects, so the decision to
make tests into objects supports our goal of making test writing raore inviting (or at
least less imposing).

The ComrandPattern (see GoFBook) fits our needs quite nicely. Quoting from the
intent, "Encapsulate a request as an object, thereby letting vou ...queue or log
requests...". Command tells us to create an object for an operation and give it a
method "execute”.

Here is the code for the class definition of TestCase:
[«javaSource =]junit.frameworlk TestCase; lines=first,last;
comments=no;[</javaSource=]

Because we expect this class to be reused through inheritance, we declare it "public
abstract". For now, ignare the fact that it irmplerments the Test interface. For the
purposes of aur current design, you can think of TestCase as a lone class.

Every TestCase is created with a name, so if a test fails, vou can identify which test
failed.

[«javaSource=]junit.framewark TestCase#TestCase(String); cormments=no;
lines=first,last[</javaSource =]

Ta illustrate the evalution of JUnit, we use diagrams that show snapshots of the
architecture, The notation we use is simple. It annotates classes with shaded boxes
containing the associated pattern. When the role of the class in the pattern is obvious
then only the pattern name is shown. If the role isn't clear then the shaded box is
augmented by the name of the participant this class corresponds to, This notation
minimizes the clutter in diagrams and was first shown in (see
ApplyingDesignPatternsinlava)l,

Figure 1 shows this notation applied to TestCase. Since we are dealing with a single
class and there can be no ambiguities just the pattern name is shown,

[<uml=]junit.frarmework.ComrmandPatternInstance[</urml =]

Figure 1. The class [[javaSource:junit framework. TestCase][TestCase]] applies
CommandPattern (see CommandPatterninstanceAtTestCase)

Save | Cancel | Append this template:l--No ternplate-- 'I Append |

Figure 7: Editing the JUnit’s cook’s tour document.

-

Here iz the code for the claszz definition of TestCase:

m - S junitframework TestCase type %/

public abstract class TestCasze extends Assertimplemnents Test {

Because we expect this class to be reused through inheritance, we declare it
"public abstract". For now, ignore the fack that it implements the Test
interface. For the purposes of our current design, you can think of TestCase
as a lone class,

Every TestCase is created with a narme, so if a test fails, you can identify which
test failed,

m A— /¥ junitframework TestCazes#TestCasa(String) constructor ¥/
public TestCase(String name) {

To illustrate the evolution of JURit, we use diagrarms that show snapshots of
the architecture, The notation we use is simple. It annotates classes with
shaded boxes containing the associated pattern, When the role of the dass in
the pattern is obvious then only the pattern narme is shown, If the role isn't
clear then the shaded box iz augrented by the narme of the participant this
class corresponds to, This notation minimizes the cdutter in diagrams and was
first shown in [see ApplyingDesignPatternsinlaval.

Figure 1 shows this notation applied to TestCase. Since we are dealing with 2
single class and there can be no ambiguities just the pattern name is shown,

ﬂ - junitframewark. CommandPatterninstance

@ TestCase

| Command pattern instance at
TestCase runBara() method.

@ runBare

Figure 1. The class TestCase applies CommandPattern (zes
CommandPattermnInstance AtTestCase)

TheDesignoflUnitGettingStarted is mentioned on: TheDesignDFIUnit

Figure 8: Viewing the JUnit’s cook’s tour document.

As an example, Figure 7 and Figure 8 show parts of
the JUnit cook’s tour that describes the instantiation of
the Command pattern by the class TestCase in the JUnit
framework. The text written in the wiki document is shown
in Figure 7, and the resulting documentation is represented

in Figure 8.

With XSDoc configured and integrated in an IDE, the
developer has access to a web browser from where she can
use the XSDoc Wiki. When documenting, the developer
creates new pages, writes documents, uses IDE features such
as copy-paste and drag-and-drop, browses project resources,
and defines links to other pages or special contents, such
as Java source code or UML diagrams, using predefined
tags and linking mechanisms. In Figure 9 is represented
a snapshot of XSDoc integrated in the Eclipse IDE. It is
worth to mention that this possibility of editing all kinds of
contents without switching environments is a very important

incentive for documenting while designing and coding.

Once created, the contents are stored in the XSDoc
contents repository in a textual format, XML or free-text.

The contents are preserved intact as originally created.

4.2 Presenting Contents

When an heterogeneous document is requested for
presentation in the wiki, the contents are then retrieved
from the repository and weaved together on the fly, at page
load-time, possibly from both external contents and wiki

contents, and converted to the format requested.

The contents are always available for web-based browsing

amn

e 4 mass - =
L —]
E [umML modsls == P— J

.
Figure 9: A snapshot of XSDoc integrated in Eclipse

through the XSDoc Wiki, but they can also be exported
to static HTML, for off-line browsing, or to PDF files,
for high-quality printing. Source code is presented with
syntax-highlighting, and smart hyperlinking to other source
code files, formal documentation contained in Javadoc or
Doxygen comments, and other related documents, thus
providing a good navigability in the overall existing software
artifacts (code, models and documents).

Any change on external contents, such as the referenced
code or models, is automatically reflected in the documen-
tation when the web page is refreshed by the browser, or
when the involved contents are modified and saved.

S. CONCLUSIONS

In this paper, we have presented a wiki-based approach
for quickly weaving heterogeneous software artifacts from
multiple sources of contents, in concrete, from source code
files, models, and documents. The dynamic nature of the
approach ensures that the contents are always up-to-date
and semantically consistent.

The approach is based on well-know software documen-
tation techniques, namely literate programming and some
of its most contemporary alternatives. It combines the
simplicity, easiness and versatility of the collaborative doc-
ument edition with wikis, the well-known qualities of XML
technology in terms of information integration, processing
and presentation, and the powerful development features of
open IDEs.

From our experience with XSDoc Wiki and the earlier
prototypes, we are convinced that the idea of wiki-
based software documentation, combining wiki and XML
technologies, is very attractive and enforces the idea that
documenting-while-developing can be simplified if supported
with appropriate tools, especially when they are integrated
in an open IDE. XSDoc Wiki helps on stepping forward
to the direction of documentation-enabled development
environments, which eventually would change the attitude
of developers on the usefulness of documenting.

The idea of wiki-based software documentation and
XSDoc are at the moment of this writing under research
in the context of the DocIt! project, at FEUP, where
XSDoc is being improved with browsing features to help
adapt documentation contents to the user needs (zoom,
exploration mode, error recovery, extensive search), new

plugins for integration with other popular IDEs (Microsoft
VisualStudio), and integration in popular wikis (TWiki [27],
MediaWiki [29], SnipSnap [17], EclipseWiki [32]).

In order to quantitatively and qualitatively evaluate
the impact of these ideas and tools on the quality,
understandability and usability of the resulting software
documentation, user tests and experiments are also being
carried on in different settings, ranging from the academia
to industry.

6. REFERENCES

[1] A. Aguiar. A minimalist approach to framework
documentation. PhD thesis, Faculdade de Engenharia
da Universidade do Porto, September 2003.

[2] A. Aguiar, G. David, and G. Badros. JavaML 2.0:
enriching the markup language for Java source code.
In Proceedings of XATA 2003, XML: Aplicaes e
Tecnologias Associadas, February 2004.
http://www.fe.up.pt/~aaguiar/javaml/.

[3] A. Aguiar, G. David, and M. Padilha. XSDoc: an
Extensible Wiki-based Infrastructure for Framework
Documentation. In E. Pimentel, N. R. Brisaboa, and
J. Gémez, editors, JISBD, pages 11-24, 2003.

[4] K. M. Anderson, S. A. Sherba, and W. V. Lepthien.
Towards large-scale information integration. In
Proceedings of the 2/th international conference on
Software engineering, pages 524-534. ACM Press,
2002.

[5] G. J. Badros. JavaML: a markup language for Java
source code. Computer Networks (Amsterdam,
Netherlands: 1999), 33(1-6):159-177, 2000.

[6] K. Beck and E. Gamma. Junit: A cook’s tour, 2003.
Available from http://www.junit.org.

[7] R. Bodner and M. Chignell. Dynamic hypertext:
querying and linking. ACM Comput. Surv., 31(4es):15,
1999.

[8] R. Bodner, M. Chignell, and J. Tam. Website
authoring using dynamic hypertext. In Proceedings of
Webnet’97, Toronto: Association for the Advancement
of Computing in Education, pages 59—64, 1999.

[9] A. B. Coates and Z. Rendon. xmLP a Literate
Programming Tool for XML & Text, 2002.
http://xmlp.sourceforge.net/.

[10] M. L. Collard, J. I. Maletic, and A. Marcus.
Supporting Document and Data Views of Source
Code. In Proceedings of DocEng’02, McLean, Virginia
USA, November 2002.

[11] G. Cronin and B. Barnett. Very quick wiki homepage,
2003. Available from
http://veryquickwiki.sourceforge.net/.

[12] W. Cunningham. Portland pattern repository., 1999.
Available from http://c2.com/cgi/wiki.

[13] Eclipse. Eclipse, an open and extensible integrated
development environment, 2003. Available from
http://www.eclipse.org.

[14] O. M. Group. XML Metadata Interchange (XMI),
2005. Available from http://www.omg.org/.

[15] S. C. Gupta, T. Nguyen, and E. V. Munson. The
software concordance: A user interface for advanced
software documents. In Proceedings of 6th IASTED
International Conference on Software Engineering and

Applications, MIT, Cambridge, MA, USA, November
2002.

J. Hartmann, S. Huang, and S. Tilley. Documenting
software systems with views II: an integrated
approach based on XML. In Proceedings of the 19th
annual international conference on Computer
documentation, pages 237-246. ACM Press, 2001.

M. L. Jugel and S. J. Schmidt. SnipSnap Wiki
homepage, 2003. Available from
http://www.snipsnap.org/.

M. Knasmiiller. Reverse Literate Programming. In
Proceedings of the Software Quality Conference,
Dundee, 1996.

D. E. Knuth. Literate programming. The Computer
Journal, 27(2):97-111, 1984.

D. Kramer. API documentation from source code
comments: a case study of Javadoc. In Proceedings of
the 17th annual international conference on Computer
documentation, pages 147-153. ACM Press, 1999.

E. Mamas and K. Kontogiannis. Towards Portable
Source Code Representations Using XML. In
Proceedings of WCRE’00, Brisbane Australia, pages
172-182, November 2000.

K. Ngrmark. An elucidative programming
environment for Scheme. In Proceedings of
NWPER’2000 - Nordic Workshop on Programming
Environment Research, pages 109-126, May 2000.

K. Ngrmark, M. Andersen, C. Christensen, V. Kumar,
S. Staun-Pedersen, and K. Sgrensen. Elucidative
programming in Java. In Proceedings on the eighteenth
annual international conference on Computer
documentation (SIGDOC), pages 483-495. IEEE
Educational Activities Department, September 2000.

[24]
(25]

H. P. Report. Towards modern literate programming.
J. Sametinger and G. Pomberger. A hypertext system
for literate C++ programming. Journal of Object
Oriented Programming, 4(8):24-29, 1992.

Sun Microsystems. Javadoc Tool Home Page, 2003.
http://java.sun.com/j2se/javadoc/.

P. Thoeny. Twiki homepage, 1998. Available from
http://www.twiki.org/.

D. van Heesch. Doxygen — a documentation system
for C++, Java and other languages, 2002. Available
from http://www.doxygen.org.

B. Vibber. Mediawiki homepage, 2001. Available from
http://www.mediawiki.org/.

F. Vitali and M. Bieber. Hypermedia on the web:
what will it take? ACM Comput. Surv., 31(4es):31,
1999.

N. Walsh. Literate Programming in XML, Oct. 2002.
http://nwalsh.com/docs/articles/xml2002/.

C. Walton. EclipseWiki homepage, 2003. Available
from http://eclipsewiki.sourceforge.net/.

World Wide Web Consortium. XSL Transformations
(XSLT) Version 1.0, November 1999. Available from
http://www.w3.org/TR/xslt.

World Wide Web Consortium. XQuery 1.0 and XPath
2.0 Data Model, November 2002. Available from
http://www.w3.org/TR/2002/WD-query-datamodel-
20021115.

