
Cosmos: A Wiki Data Management System

Qinyi Wu Calton Pu Danesh Irani

College of Computing
Georgia Institute of Technology

Atlanta, GA
{qxw, calton, danesh}@cc.gatech.edu

ABSTRACT
Wiki applications are becoming increasingly important for
knowledge sharing between large numbers of users. To pre-
vent against vandalism and recover from damaging edits,
wiki applications need to maintain revision histories of all
documents. Due to the large amounts of data and traffic,
a Wiki application needs to store the data economically on
disk and processes them efficiently. Current wiki data man-
agement systems make a trade-off between storage require-
ment and access time for document update and retrieval.
We introduce a new data management system, Cosmos, to
balance this trade-off.

Keywords
Version control systems, Wikis

1. INTRODUCTION
Social media applications, such as wikis and blogs, are grow-
ing fast and attracting millions of users around the world to
share and exchange knowledge. For example, Wikipedia [5]
receives over forty thousand browsing requests a second and
over thousands of new revision creation requests daily. It is
critical that the underlying wiki data management system
be efficient.

To detect vandalism behavior and recover from damaging
edits, wiki systems have been maintaining the entire revi-
sion histories of their documents. Current approaches either
use traditional version control systems (VCSs) or database
management systems (DBMSs) for their data management.
VCSs use disk space economically because they only store
the differences between consecutive revisions of a document,
but they have limited support for data indexing and repli-
cation as required by current wiki systems to sustain a large
amount of browsing and update requests [7]. On the other
hand, DMBSs provide advanced support for the missing fea-
tures in VCSs, but they store revisions in their entirety dis-
regarding overlapped content between consecutive revisions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSys ‘09, October 25-27, 2009, Orlando, Florida, U.S.A.
Copyright c©2009 ACM 978-1-60558-730-1/09/10...$10.00.

Using a data dump from English Wikipedia [4], our experi-
ments show that the disk space consumption between these
two approaches can be more than thirty times.

This paper introduces a new wiki data management system,
referred to as Cosmos, which balances the trade-off between
storage requirement and access time. Cosmos uses a data
structure, called partial persistent sequence [8], to represent
a document and its revision history. This new data structure
creates persistent and unique position identifiers to index
characters of a document. Those position identifiers can
be used to store revisions economically on disk and process
requests for document update and retrieval efficiently.

Next we explain how Cosmos uses PPSs to manage docu-
ment revision histories and then describe the system archi-
tecture. After that, we summarize our experiment results.
For more detail, please refer to our technical report [8]

2. PPS AND ITS APPLICATION TO DOCU-
MENT REPRESENTATION

Conceptually, a partial persistent sequence (PPS) consists
of a sequence of characters. Each character is uniquely in-
dexed by a rational number. We call the rational position
indexes position stamps. For example, the position stamps
for “abc” are 0, 0.5, and 1 respectively. A PPS never deletes
any characters. It has only one operation INSERT . For a
newly inserted character, the PPS first locates the position
stamps that are neighboring to the insertion point. Then it
assigns a rational number that falls with the range of these
two neighbors. In Figure 1, 0.3 and 0.4 are the neighbors.
‘e’ is now indexed by 0.35. Algorithms that are used to com-
pute new position stamps are called encoding schemes. In
Figure 1, the newly inserted character halves the interval
between its two neighbors.

0.1 0.2 0.3 0.4
a b c d

0.1 0.2 0.35 0.4
a b e d

0.3
c

after
insertion

e

Figure 1: A PPS insertion example

In wikis, a document consists of a sequence of characters.
It can be updated by insert and delete operations. A new
revision is created when a user commits his modification to
the wiki data storage system. A PPS represents a docu-
ment in two parts: mapping and revision. The mapping
part records the correspondence between position stamps

and their corresponding characters. The revision part con-
tains the position stamp information for each revision. Even
though the content of a document can be updated by insert
and delete operations, the PPS never deletes anything. To
correctly construct the content of a revision, the revision
maintains an array of position stamps for those characters
it contains. Figure 2 illustrates the idea. A document is
represented by a PPS, which contains five position stamps.
There are two revisions defined on it: Ridi and Ridj . Ridi

corresponds to the character sequence “c0c1c2c4”, and Ridj

“c2c3c5”. To obtain a revision, we first obtain the array, and
then sequentially concatenate the characters they point to.

c0 c1 c2 c3 c4 c5

ps0 ps1 ps2 ps3 ps4 ps5

ps0 ps1 ps2

ps2 ps3 ps5

Ridi

Ridj

ps4

PPS

Figure 2: A document’s PPS representation and two
of its revisions

3. COSMOS SYSTEM ARCHITECTURE

Berkeley
DB

library
document 2

document 1

Disk

Requests

document 3
document 4

Cosmos
library

(create,
update,
retrieve)

Figure 3: Architecture of Cosmos

Figure 3 shows the system architecture of Cosmos. It pro-
vides a library for wiki data management. Cosmos uses
Berkeley DB [6] as its backend storage system. Berkeley
DB is a general-purpose database engine that supports ef-
ficient data management on key/data pairs. In our imple-
mentation, all data are constructed in the form of key/data
pairs.

A document is represented by two tables: mapping table
and revision table. For a browsing request, Cosmos first
looks up the revision table to obtain the position stamps
of a revision, de-references those position stamps to their
corresponding characters by the mapping table, and finally
concatenates them as the returning result. For an update
request to the latest revision of a document, Cosmos uses
a diff utility [1] to first locate modification places. It then
assigns new position stamps for insertion or remove position
stamps from the latest revision. Finally Cosmos creates a
new revision and updates both tables. When storing a PPS
on disk, Cosmos does not explicitly store all position stamps
and their mappings. Instead, it stores consecutively inserted
characters in a compact record. This compact record will be
further divided into sub-records if the characters are mod-
ified. Since the compact record in general takes much less
disk space than storing the characters directly, Cosmos is
able to manage document revisions economically on disk.

4. EXPERIMENT RESULTS

We compare the performance of Cosmos with two other wiki
data management systems. One is TWiki [3], which uses a
VCS-based approach. The other is MediaWiki [2], which
uses a DBMS-based approach.

Hardware configuration All experiments are conducted
on a 64-bit GNU/Linux machine with Intel Core 2.83GHz
CPU, 4GB RAM, and 1-Terabyte SATA hard disks.

Software configuration We used MediaWiki 1.13.5 with
MySQL version 5.1.30 and TWiki with RCS 5.7.

Data set Wikipedia provides full-text access to all docu-
ments and their revision histories. We use a dump of the En-
glish Wikipedia (enwiki-20080103-pages-meta-history.xml.7z
[4]) which is around 850GB in size. We do a random sam-
pling to obtain 10 percent of documents and store their re-
visions in different systems. In the sampled data set, there
are 20,039 documents and 3,053,829 revisions.

Experiment result summary Our experiments show Cos-
mos consumes one-fifth of the disk-space and achieves an
order of magnitude speed-up in document retrieval when
compared to MediaWiki (stored on the MySQL relational
database). When compared to Twiki, although Cosmos con-
sumes five times as much disk-space, it decreases the sequen-
tial revision access time by a factor of five. We note that
the document update time for Cosmos is higher than that of
MediaWiki and TWiki, but at about 100ms it is well within
the human reaction time.

5. CONCLUSION
We introduce a new wiki data management system, Cosmos,
to achieve a balance between low disk-space consumption
and efficient document retrieval and update. We present
its design and implementation, based on partial persistent
sequences, as well as demonstrate its performance using a
representative sample of Wikipedia data. As a next step,
we plan to import the whole data dump of Wikipedia and
study its scalability in large settings.

6. REFERENCES
[1] GNU wdiff. http://www.gnu.org/software/wdiff/.

[2] MediaWiki.
http://www.mediawiki.org/wiki/MediaWiki.

[3] TWiki. http://twiki.org/.

[4] Wikipedia data dump download.
http://download.wikimedia.org/enwiki/.

[5] Wikipedia the free encyclopedia.
http://en.wikipedia.org/wiki/Main_Page.

[6] Michael A. Olson, Keith Bostic, and Margo I. Seltzer.
Berkeley db. In USENIX Annual Technical Conference,
FREENIX Track, pages 183–191, 1999.

[7] Ǵl ↪erald Oster, Pascal Molli, Sergiu Dumitriu, and

Rub́l ↪en Mond́l ↪ejar. UniWiki: A Reliable and Scalable
Peer-to-Peer System for Distributing Wiki
Applications. Research Report RR-6848, LORIA –
INRIA Nancy Grand Est, Feb 2009.

[8] Qinyi Wu, Calton Pu, and Danesh Irani. Cosmos: A
wiki data management system. Research Report
GIT-CERCS-09-07, Georgia Institute of Technology,
2009.

