
A Meta-reflective Wiki for Collaborative Design
Li Zhu

Università degli Studi di Milano
Via Comelico 39/41
20139 Milano, Italy
+39 02 50314007

zhu@dico.unimi.it

Ivan Vaghi
EarlyMorning

Via Santa Croce 4
20122 Milano, Italy
+39 393 9507609

ivan@earlymorning.com

Barbara Rita Barricelli
Università degli Studi di Milano

Via Comelico 39/41
20139 Milano, Italy
+39 02 50314007

barricelli@dico.unimi.it

ABSTRACT
This paper presents MikiWiki, a meta-reflective wiki developed to
prototype key aspects of the Hive-Mind Space model. MikiWiki is
aimed at supporting End-User Development activities and
exploring the opportunities to enable software tailoring at use
time. Such an open-ended collaborative design process is realized
by providing basic boundary object prototypes, allowing end users
to remix, modify, and create their own boundary objects.
Moreover, MikiWiki minimizes essential services at the server-
side, while putting the main functionalities on the client-side,
opening the whole system to its users for further tailoring. In
addition to traditional wikis, MikiWiki allows different
Communities of Practice to collaboratively design and to
continuously evolve the whole system. This approach illustrates
the meta-design concept, where some software collaboration
between professional developers and end users is made possible
through communication channels properly associated with the
environment. As such, the MikiWiki environment is presented as
a ‘concept demonstrator’ for meta-design and end-user tailoring.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
elicitation method. D.2.2 [Software Engineering]: Design Tools
and Techniques – evolutionary prototyping, user interfaces. D.2.6
[Software Engineering]: Programming Environments –
graphical environments, interactive environments.

General Terms
Design, Experimentation, Human Factors

Keywords
Hive-Mind Space model, Meta-design, End-User Development,
Boundary Objects, Co-evolution, Habitable Environment, Wiki,
MikiWiki, Mikinugget.

1. INTRODUCTION
Web 2.0, social media and advanced information technology are
changing the role of end users and the way they share and manage
knowledge, and encourage cultures of participation [1]. Complex
design projects also need to actively engage all stakeholders in the
design process. However, communication among stakeholders

often breaks down due to differences in cultures, backgrounds and
modes of communication. Moreover, the co-evolution of design
communities and software systems [2] requires open software
development environments to support emerging needs.

The paradigm of End-User Development (EUD) aims to explore
the opportunities to enable software development at use time
involving the end users as experts of specific domains [3]. In fact,
EUD techniques propose various approaches that allow users of
software systems, who are not professional software developers,
to create, modify or extend software artifacts at use time [4].
Viewing software as a continuously evolving artifact considerably
contributes to the progress of software development.

The Hive-Mind Space (HMS) model [5] [6], a meta-design [7]
conceptual model, has been proposed to tackle the fore mentioned
issues and to support collaborative creativity among design teams.
This paper describes the architecture and design principles of
MikiWiki, a prototype of the HMS model that we built to evaluate
the technical feasibility and the effectiveness of the model. By
implementing the HMS model, we also hope to be able to evaluate
the meta-design system and discover new design opportunities.
We call MikiWiki a meta-reflective system, meaning that it is
reflective because it makes visible and accessible parts of its
infrastructure to the users. The 'meta' refers to the meta-design
features available to the users. The contribution of this work is to
show the feasibility of implementing HMS by extending the
concept of wiki with programmable concepts, focused within a
conceptual framework.

The following section briefly introduces the HMS model. Section
3 explains the reasons why we chose a wiki model as the basic
infrastructure for prototyping the HMS model and introduces
MikiWiki. Section 4 describes the MikiWiki architecture. Section
5 explains how MikiWiki reflects upon open structure, boundary
objects and habitable environments concepts of the HMS model.
Section 6 demonstrates how MikiWiki can be used in
collaborative iPhone mockup design. Section 7 outlines some
possible application domains. Some reflections and a brief
conclusion are given in the last two sections.

2. HIVE-MIND SPACE MODEL
The Hive-Mind Space model explores the meta-design approach
and aims to bring software engineers, domain experts and end
users together to collaboratively work on design projects. A
fundamental objective of meta-design is to create socio-technical
environments that empower users to engage actively in the
continuous development of systems rather than being restricted to
the use of existing systems. The meta-designers design the design
process as well as design context [7]. Each stakeholder belonging
to a specific design community (i.e. a Community of Practice
(CoP) [8]) in the HMS model is provided with a ‘habitable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

, October 3-5, 2011, Mountain View, CA, USA.
Copyright

53

environment’ [9]. Each habitable environment provides essential
tools for a CoP and allows its members to perform design
activities. Moreover, it is localized to the CoP’s culture, role and
digital devices in use [10] [11]. The HMS model derives from the
Software Shaping Workshop (SSW) methodology [3] and
supports three different levels of participation and design
activities (see Figure 1): i) meta-design level, where software
engineers maintain the system and design environments for
domain experts; ii) design level, where domain experts design
environments for end users; iii) use level, where end users tailor
and use the environments and tools.

In addition, the HMS model has an open infrastructure, i.e. CoPs
can tailor their habitable environments.

To enhance communication among CoPs, the HMS model
introduces a central communication channel serving as a boundary
zone [12], where different CoPs can create, exchange, and
cooperate around boundary objects [13]. For example, an
architecture model or a sketch can be used as boundary objects
among architects, clients and civil engineers for reasoning about
design. The HMS model explores boundary objects as a) a means
to enhance the communication among different design
communities, and b) artifacts that mediate communication. The
role of mediators is supported by the fact that boundary objects
are localized differently in terms of users’ role in the context,
culture, expertise and background and device in use. The HMS
model has been applied before to two different cases, mechanical
engineering and collaborative knowledge management for tourism
[5][6]. In these two applications, the environments were designed
and implemented using a specific software framework, the
BANCO framework [10][11]. In this paper, we present a new
architecture and a different approach of prototyping the HMS
model.

Figure 1. Hive-Mind Space model

3. MIKIWIKI
Wikis are a collection of pages that can be edited by anyone, at
any time and from everywhere, and they are becoming a popular
format for sharing knowledge in both academia and professional
domains [14].

3.1 Starting from Wiki
Our approach and motivation to use a wiki model as the basis to
prototype the HMS model are based on the following reasons:

1. Wikis encourage a culture of participation, since wikis enable
users to share and develop knowledge from a wide range of
domains. Cunningham suggests that wikis are useful tools for
building CoPs [14].
2. Wikis have an open structure and foster social creativity.
3. The distinction between design time and use time is blurred.

4. Wikis allow incremental knowledge creation and enhancement.
In order to collaboratively build up knowledge or perform design
activities among diverse design teams, a wiki can be an ideal
platform and format [15].

5. Wikis have also been shown to express emergent organization
and a degree of meta-design via communities using wikis to
discuss how the wiki itself should evolve, making the wiki both
the product and the medium of communication. The open editable
structure, pages as basic units of sharing, existing documented
architecture models and implementation of traditional wikis, make
them a good starting point for prototyping the HMS model.

3.2 Extending the Wiki
Typical wikis lack support to create new domain-oriented tools
within the wiki itself. Existing wiki engines only allow users to
enter passive content and do not allow users to customize wiki
pages. Therefore wikis cannot be used to host or author rich
dynamic and interactive content [16].

On the other hand, application wikis enhance wiki systems with
lightweight programming features that aid in making data
structure and processes explicit. Using these features, end-users
can program a wiki to better support their collaboration [17], for
instance SnipSnap [18] and XWiki [19]. This approach, however,
is limited since language constructs are often domain specific [17]
and users are constrained to write code in markup languages
rather than to interact and inspect objects [16] [20].

In the next section we will explain how MikiWiki extends wikis
with typed pages [21], which allow users to link structured text
and data pages to specific templates and layouts. This mechanism
allows users to incrementally evolve part of the wiki text from
informal text to structured contents. The MikiWiki system is open
and it goes beyond templates, allowing advanced users to process
structured content by defining their own page types using
JavaScript.

4. ARCHITECTURE
Client-side Web development is an emerging trend, since it
provides the possibility to empower end users to create
applications by merely using a Web browser [20]. MikiWiki
utilizes a client side Web development approach to put end users
in charge of their design problems, to enhance their tailoring
power and thus to create situational applications [22] for better
collaboration and problem-solving.

4.1 Architectural Philosophy
In MikiWiki, the server side supports the minimal amount of
features and services that maintain basic functionality. Whenever
it was possible, functionality was moved to the client-side in the
form of JavaScript code. The server-side primitive services are
still available to the client-side via AJAX calls.

Some functionality cannot be removed from the server side
specifically, all the basic facilities that handle the sharing of
information as the server acts as a repository and single
aggregation point for wiki pages. We created an abstract system
for sharing pages, without encumbering the server side with the
specifics of what is being shared, therefore keeping it very simple.

54

The semantics of what is being shared are expressed on the client
side, where eventual mikinuggets are executed. A mikinugget is a
page embedded within another page in order to create sharable
remixable components. Mikinuggets in MikiWiki are explicitly
designed to reflect the HMS model’s boundary objects’ concept.

As a concept demonstrator, MikiWiki aims to explore some key
characteristics of meta-design, i.e. design infrastructure
tailorability and EUD. Therefore, the system architecture mainly
addresses the tailoring flexibility of the client side, experimenting
with the concept of empowering the end users to evolve the
behavior of the system according to their collaboration.

Issues of security and scalability are not explicitly addressed since
they are out of our research focus and we mean to keep the
architecture tidy, lightweight and fully focused on collaborative
tailoring and open-ended evolution.
The architecture of MikiWiki is depicted in Figure 2.

4.2 Architectural Implementation
MikiWiki is implemented as a Ruby [23] web application written
on top of the Sinatra framework [24] on the server side and as
HTML and JavaScript on client side, also making ample use of
the jQuery framework [25] and its plug-ins.

JavaScript was chosen as the boundary-object (that is, MikiWiki’s
mikinuggets), creation language for several reasons: the code is
interpreted on the client’s side and runs on most devices, within
the user’s browser, and various libraries are available for building
cross-platform and cross-browser JavaScript applications. There is
also a growing popularity of frameworks such as node.js [26],
enabling JavaScript on the server side, which we hope to leverage
in the future. Although JavaScript supports dynamic scripting, it is
seldom used to empower end users to influence and even change
the behavior of Web programs.

In MikiWiki, the server side supports the minimal amount of
features and services that maintain basic functionality. The server
side handles all the tasks and rules related to the page and
environment infrastructure, the basic navigation framework,
authorization and notification services, while the client handles
the rendering and the management of the interaction with the
users.

Some functionality cannot be removed from the server side,
especially all the basic facilities that handle the sharing of
information, since the server acts as a repository and single
aggregation point for wiki pages. Whenever a feature does not
necessary have to be run on the server side, it can be expressed as
JavaScript code within a wiki page. This allows the feature to be
available for inspection and tinkering by the users, who might
decide to customize it for their environment. Centralized
‘primitive’ services can be accessed by the client-side features
with AJAX calls.

We mean to keep the server-side architecture very simple. The
server does not have any information about the content of the
pages or the meaning of the data that is being served. The
associations among content page, data page and format page are
authored by users, while the server only keeps track of these
relationships rather than their semantics.

Once the pages are loaded on the client side and the embedded
mikinuggets are expanded, then the page content is interpreted
according to the format of the data page.

The server provides some additional functionality to user
generated pages on the client side by exposing an AJAX interface

to authentication, synchronization and awareness and versioning
services.

Figure 2 shows the MikiWiki layered architecture. Embedded
mikinuggets are executed within the browser as JavaScript code.
When a resource is requested during the rendering of a
mikinugget, static text or JSON content and related dynamic
JavaScript are retrieved, passed to the rendering engine, rendered
in HTML format and displayed in the user’s browser.
A lifecycle for fetching and rendering a page in MikiWiki is
described below.

A user accesses MikiWiki by loading the URL of a page within
the Web browser. This request gets sent to the MikiWiki Server.

Figure 2. MikiWiki architecture

A page load request is routed to the Wiki Page Service, within the
Services layer. The Wiki Page Service takes care of fetching the
page content and metadata, and answers queries related to a page
and its context: for instance whether this page has child pages or a
parent page, whether it is an environment, etc. Additionally, the
service layer provides CRUD functionality (Create, Read, Update,
Delete), environment assessment information, authentication of
the user, enhancing awareness, synchronizing communication and
tracking versions.

The information returned to the browser might not be simple
HTML, since it possibly contains mikinuggets, which are placed
in hidden DIV tags. All the mikinuggets must be interpreted,
expanded and rendered to become visible HTML within the page.

Once a page is loaded, the MikiWiki Rendering Engine is
activated. Every mikinugget in the loaded page gets passed to the
Rendering Engine to be executed and materialized according to
visible HTML code.
The Rendering Engine firstly checks the format metadata of the
mikinugget to see whether the predefined rendering strategies can
handle it. The three basic rendering strategies support pictures,
plain text (to be used when editing) and MikiWiki Markup
Language.

55

If the format does not fall into any of these three rendering
categories, the Rendering Engine exploits a custom rendering
strategy. The name of the format corresponds to a MikiWiki page,
containing detailed rendering instructions in the form of an
HTML template or JavaScript code.

The Rendering Engine fetches the JavaScript contained by the
format page via an AJAX call and executes it in the browser. The
JavaScript may further make its own AJAX calls to the MikiWiki
services in order to retrieve all the information needed to perform
its rendering for instance, fetching further pages containing data in
a JSON format, querying the environments or getting user profile
information, checking file versions and so on.

Finally, the JavaScript produces the HTML code and makes it
visible. If the returned HTML code contains further boundary
objects, the expansion step is executed recursively until all nested
mikinuggets are fully expanded and rendered in the Web browser.

5. MIKIWIKI DESIGN PRINCIPLES
The MikiWiki architecture has been designed to allow the
implementation of mechanisms that support the HMS concepts.
This is not a one-to-one mapping, as many theoretical concepts,
such as boundary objects, cannot be reduced to a simple software
system component.

5.1 MikiWiki pages as organizational
structure
Information in MikiWiki is organized by pages. MikiWiki pages
can act as the materialized representations of boundary objects
and every page can easily embed other pages. CoPs can
manipulate, create and reuse pages created by other users by
referencing their URL, uniquely identifying them.
The HMS does not specify the shapes of the boundary zone,
boundary objects or environments. It specifies ‘bordering’ and
‘containment’ relationships, but not the nature of the space or its
navigation. The focus of the HMS model is not on the space
metaphor, and thus in MikiWiki we chose the simplest
interpretation of space that was consistent with the model. We
decided to represent the collaborative space as a tree structure of
content, allowing the organization of artifacts in environments and
sub-environments.

A page can be either a “Folder page”, used primarily to group and
navigate sub-pages, or a “Content page”, used to convey users’
content. From within a folder it is possible to create new pages
and to upload pictures.

A folder can also be promoted to an environment, a basic
mechanism to manage and organize boundary objects in the HMS.
The members of a CoP can tailor an environment to reflect their
thinking and workflow. Moreover, within this local environment,
a CoP can create pages related to the tasks at hand as well as
create sub- environments.

5.2 Content pages, Data pages, Format pages
MikiWiki pages are accessing points to the deeper level of the
system. They are the building blocks of a complex, multi-level
medium that can be constantly tailored by users, thus allowing
evolving the system’s structure and behavior to evolve. MikiWiki
supports three basic types of pages: text pages, data pages and
format pages. All of them act as boundary objects, in the sense
that they can be shared and extended by users.
Content pages can embed other content pages or data pages. Data
pages are typed pages with structured text (either in JSON, XML
or any text convention that the user chooses) and they are

associated with a specific format page. A format page can be
either an HTML template with insertion points or JavaScript code.
A format page is basically a set of rules or some code that defines
how to render a data page.

Figure 3 shows a rendered content page containing a chat
mikinugget. Advanced users can choose to highlight the
mikinuggets embedded within a page and make visible a link to
the pages containing their data (wall-data in the figure) as well as
their behavior (wall in the figure). These links facilitate and
stimulate advanced users to access meta-level functionality and
modify or clone existing functionality and tools.

Figure 3. Content page, data and format page of a chat

mikinugget

5.3 Mikinuggets
MacLean suggested that a more incremental approach is desirable
to allow end users to express their customization requirements as
much as possible using skills they already possess, and to equate
increases in customization power with proportionate increases in
the level of expertise required [27].

We provide a set of mikinuggets to be embedded for instance
ranking, commenting, annotations, drawing tools, notification,
online presence, change-tracking, user-tracking, chat, to-do list,
video embedding, access control and profile. By utilizing these
mikinuggets, non-programmers can easily start using and
remixing existing objects, while advanced users can clone and
modify these mikinuggets and consequently introduce new
behaviors.
The separation between user interface and application (the surface
and the deep [28]) restricts end users to simple manipulation of
surface features, while the deeper system remains only accessible
to developers. However, developers often do not know all the
ways in which the system might be used by different end users
over time [29]. Hence some lower-level details of system behavior
should be also available for customization at the user interface.

Mikinuggets allow end users further appropriation of the system.
Mikinuggets’ pages act as a mechanism and interface for
supporting the creation and evolution of software artifacts beyond
their initial form. Moreover, mikinuggets are also a medium made
of captured knowledge. CoPs can incrementally construct
knowledge via mikinuggets during collaboration and
communication.
Figure 4 shows a screenshot of a page containing a description of
a set of role-playing game’s characters and three mikinuggets,
namely, stickyNotes, tag and notifychanges nuggets. The

56

<<nugget’s name:parameters>> syntax demonstrates the way to
include mikinuggets.

In this case, a player can create stickynotes, add textual
annotations and place them at any location on the page.
Stickynotes’ color (pink, blue, green) can also indicate the
importance of the annotation or annotation types according to

player’s need.

The tag mikinugget allows players to assign keywords to pages.
The auto complete tags can be predefined in a glossary file.
Players can create their own tags. The notifychanges mikinugget
allows players to specify who should be notified via emails
whenever the page is modified. <<notifychanges:john,mike>>
indicates that Mike and John will be notified by email when this
page is modified. Mikinuggets also enable individuals or CoPs to
take control of their communication experiences.

A MikiWiki page consists of three parts, a header Div to indicate
the current page path and a user’s profile information, a content
area and a sidebar showing the active environments.

To better support different levels of participation, MikiWiki
provides two different content editors, a rich text editor, which is
a WYSIWYG editor that allows novice users to easily create text
context, and a JavaScript editor aimed at expert users who are able
to programming. Figure 4 illustrates the characters page in editing
and rendering two different views.

5.4 Habitable environments
In accordance with the HMS model, a flexible mechanism is
designed to allow CoPs to partition and locally configure
communication. Environments are used as a way to associate
specific behavior to a large set of pages.

5.4.1 Designing Habitable Environments
Any folder in MikiWiki can be promoted to an environment and it
can be customized by embedding a set of mikinuggets.

Environments do not impose a predefined structure on all CoPs,
but allow sharing specific features among selected members. For
example, access control in MikiWiki is not an inherent property of
all environments, but it can be achieved by including a “check
point” mikinugget in the environment settings page: all the pages
within this environment therefore inherit the access control

property.

If an environment loads an “online-presence” mikinugget, all
users that are accessing that environment become reciprocally
aware of one another’s presence as MikiWiki starts tracking user
activities within the environment and displays which users are
browsing that environment.
The sidebar shows all the active environments: the current
environment and all the upper level environments enclosing it
(Figure 4). Since a sub-environment inherits all the characteristics
of its upper level environments, the mikinuggets of the current
environment and its parent environments are activated.

5.4.2 Habitable Environments for Mediation
The HMS model addresses the complexity of design projects by
bringing together different CoPs into a Community of Interest
(CoI) [30] to work together. Design activities require
collaboration among different CoPs and are characterized by
symmetry of ignorance [7]. This means that no CoP possesses all
the knowledge, or more important knowledge than others, but
rather that all the knowledge is symmetrically important in the
problem solving process and tacitly distributed among the
community [31]. Exploiting the power of the “symmetry of
ignorance” leads to creative results [32].
In a collaborative system, there is always a trade-off between
convergent and divergent points of view. Within the same
knowledge system, a CoP can take advantage of a shared
background and communication is comparatively easier internally
than with outsiders. Members of the CoP tend to be biased by

Figure 4. Embedding multiple mikinuggets

57

communicating with people sharing the same practices. Divergent
viewpoints in a CoI are therefore needed for solving complex
design problems and coming up with innovative solutions.
Nevertheless, CoPs with different cultural backgrounds use
different systems of signs, languages and representations [33] and
may have different perceptions as well as interpretations.
Communication is needed to reach a common understanding
about the messages they exchange.

Environments are also a mechanism to negotiate the awareness of
convergent and divergent viewpoints regarding an object of
interest by presenting it in a meaningful way to different users.
For example, when designing an apartment, the same information
might be presented differently in different environments, i.e. floor
plans in an environment for architects, construction details in an
environment for civil engineers, a 3D rendered model in the
buyers’ environment, and a price table in the contractor’s
environment. Moreover, being aware of those differences
eventually enhances the mutual understanding and supports CoP
collaboration.

Figure 5. Two different habitable environments

MikiWiki supports the mediation mechanism of the HMS model
by allowing mikinuggets to be represented differently within
individual environments.

Figure 5 shows an example where the same data is visualized
differently in two different habitable environments: shopping
items represented as photos for Americans and as a price list table
for Italians. The data page is stored in the knowledge base and can
be accessed by all the design communities. On the other hand,
each environment has its own mediation mechanism to materialize
the shared data in a way that is meaningful to its inhabitants.

The mediation mechanism, as envisioned in the HMS model, was
initially based on user’s role, culture and platform in use.
However since the mediation mechanism is also handled as a wiki
page, it is open to modifications. Instead of gathering data about
the end users’ culture, role and device, and automatically filtering
information for them, the open mediation mechanism goes beyond
the “perfect personalization” dilemma [34] and enables the
environment designer to decide directly what is meaningful
information and how to represent it.
Making the mediation mechanism open and editable empowers
CoPs to design their own environment and optimize their
workflow at different design stages.

5.4.3 Mediation Mechanism for Tweaking and
Tinkering
A habitable environment is also a space for end users to further
refine their means of communication, tinkering with new tools
and tweaking mikinuggets according to their aims.

Figure 6. Initial chat mikinugget tweaked for better

collaboration
Figure 6 shows how students tweaked the existing chat
mikinugget to support their collaboration on a project. The
students started using the chat mikinugget to exchange ideas that
were then copied to wiki pages. This presented a few unexpected
issues: links copied to the chat were not clickable and the chat text
was written with a white font, making it unreadable when pasted
on the white wiki page.

When a chat page is created, it loads the standard chat behavior,
as in the case of ‘chat alpha’ in Figure 6. The students cloned the
chat code page within their own environment (‘beta’ in the figure)
and started modifying it. Consequently, every chat page visualized
within the beta environment picked up the new local chat code.

58

In section 8 we give more details on the page lookup mechanism
and how it is used to support the mediation mechanism.

In the tweaked chat mikinugget, three changes have been made to
the initial chat mikinugget: i) each chat entry’s font color is black,
allowing users to copy text to wikipages with a white background;
ii) the chat entries’ background color is changed to white to offer
some contrast to the black font; iii) each entry is parsed and if a
URL link is found, it is automatically made clickable in order
improve contextual navigation.
Some weeks later, another group of users involved in a different
project appropriated the tweaked chat created by the first group
and started using it in their own environment.
Notably, mikiwiki supports extending new functionalities without
compromising the working of an existing mikinugget for other
users; the students cloned the initial chat mikinugget code page in
a local environment and worked on their own version. If the
tinkering did not work out, the students could have deleted the
local version and simply used the closest available mikinugget
with the same name, in this case the initial chat mikinugget. The
tweaked mikinuggets can then be shared with other CoPs.

6. MIKIWIKI IN USE
The first MikiWiki use case was developed to support diverse
CoPs (mainly software engineers, designers and clients)
collaboratively designing iPhone applications.

Figure 7. Three different levels of participation

1) At the meta-design level as shown in Figure 7, software
engineers design the workflow and interactions, which generate a
mockup design environment for designers to use. In this case, the
mockup design environment is composed of three mikinuggets
written in JavaScript, namely toolbox, canvas, and trash.
2) At the design level, designers can use a mockup environment to
create an iPhone mockup by simply dragging and dropping
components and sharing their results with their team.
Alternatively, designers can create their own toolbox mikinugget

with customized design components, while the iPhone canvas
mikinugget can be easily replaced by a new mobile device or
platform for another design case. Figure 7 shows a wireframe
iPhone mockup environment.

In this case, the designed mockups are also wiki pages, acting as
boundary objects containing other boundary objects, exchanged
and shared in the community.

3) At the use level, users can vote on annotate and discuss the
mockups. The final end user environment consists of a mockup
sample by designers and three mikinuggets, ranking, stickynotes
and comment respectively.
Using the MikiWiki markup language, a user can easily include
these mikinuggets by using <<ranking>>, <<stickynotes>>,
<<comments>>. Stickynotes can be used by clients to ask for new
features and modifications or to annotate the mockup with
suggestions and comments.

Nevertheless, all the design activities can happen in the same
environment. The levels of participation are not predefined but
emergent in terms of users’ skills as well as roles, which are
highly dynamic.

7. Application Domains
MikiWiki could provide a fundamentally different design
methodology for a broad spectrum of application domains,
including the following:
• Mockup Environments. Many applications for mockup

design have been developed, such as MockingBird [35],
Balsamiq [36] and MockFlow [37]. In the design of a UI
mockup system, MikiWiki would not only support rapid
prototyping, but also it would bring together different design
teams and support their communication. Mockups could be
easily stored and shared by the communities within MikiWiki.

• Productivity Applications. Applications such as Google
Docs, GoogleTalk and Gmail already offer a high level of
sharing and collaboration within an organization, between
friends and with the larger public. These applications however
lack support for customization, which is often achieved only
by using specialized browser plug-ins. The use of some of the
techniques employed by MikiWiki would allow building of a
custom features and leverage the existing communication
mechanisms to share them with other users.

• Online Spreadsheets. Google Spreadsheet and other online
applications allow users to work on the same spreadsheets.
Google Spreadsheet went so far as allow the scripting of new
formulas in JavaScript. We can see how these formulas and
macros could be shared and maintained collaboratively across
an organization using mechanisms similar to the ones
employed by MikiWiki.

• Collaborative Creative Writing. MikiWiki can be used as a
brainstorming tool and platform to build dedicated tools for
defining basic story principles and structure, and leave
participants generating ideas and developing plots.

• Online Games. Games have been open to user
customizations (known as ‘mod’) for a long time. SecondLife
is a great example of how to provide extensive customization
and scripting from within the environment itself [38]. As in
MikiWiki, online gaming platforms could benefit from an
environment for social customization and sharing of
programmable artifacts and characters.

• Collaborative Software Design [39]. Software design
and design process documentation can be easily integrated in

59

MikiWiki. Beginner, advanced and expert users are
encouraged to participate in software design, discuss it, share
code and test application prototypes. Github (social project
sharing) [40], Cloud9 (team based online development
environment) [41] and jsFiddle (online JavaScript
prototyping) [42] are all projects working in this direction.

• Web Widgets. Projects such as Netvibes [43] and iGoogle
[44] focus on creating cross-platform reusable widgets. These
widgets are generally hosted by third parties, although Google
has been working on integration with its own Google App
Engine [45]. MikiWiki could have the same potential as well
as highlighting code sharing and the social aspects of
development.

• Social Networking Platforms. Currently, the most popular
social networking platforms, such as Facebook and LinkedIn,
support the development of third party integrated applications,
yet are lacking an integrated development environment and
custom services live on third party servers called via callback
APIs. MikiWiki-inspired techniques would work on client-
side extension mechanisms and integrated shareable code
environments, relying on the existing social features.

• E-learning and Knowledge Sharing. Knowledge can be
made more informative and more vivid by combining
multimedia and mikinuggets. For instance, users can attach
interactive examples to any articles. Articles then are not just
a static form but become interactive essays by combining
more complex interactive behaviors. Sharing course notes,
articles, discussions can also be made explicit within the
environment.

Based on GoogleWave technology [46], Google Shared
Spaces [47] is a wiki-like environment that allows end users
to create sharable online 'spaces'. Spaces can also embed
widgets, which however are developed and hosted outside the
Google Shared Space. Google Shared Spaces is very close to
the idea of a programmable wiki, and it could be enhanced by
integrated client-side programming and social sharing
features.

In short, MikiWiki can be applied to systems that require creative
work, allow a high degree of customization and benefit essentially
from social sharing. Comparatively, the advantage of MikiWiki is
that it does not rely on external servers; it provides integrated
environments and allows immediate feedback, through which
code and features become social artifacts. However, it could also
suffer from potential trust issues related to the code. The scripting
language is limited to JavaScript and thus relies heavily on a
backend with a set of given functionalities.

8. REFLECTIONS
Our understanding of the HMS model also evolved as a result of
implementing it, as technical affordances were exploited to evolve
the initial model and open up new opportunities. In this section we
present some observations on this process.
Tinkering, mashups and intercommunicating components
We found HTML and JavaScript to be extremely effective for
quickly building new features and mashups with Web
applications, mostly due to the recent adoption and growth of the
jQuery framework within the open-source community. Adding
language translation to an environment can be as simple as
accessing the Google translation APIs via a ready-made
JavaScript library.

HTML and JavaScript also facilitate building loosely coupled
systems. We did not design MikiWiki with the idea of creating

interoperable artifacts, yet the event-based model of JavaScript
allowed us to create independent components that could interact
with one another at runtime, as in the case of the iPhone
application. The toolbox mikinugget allows selected UI elements
to be draggable by mouse, the canvas mikinugget accepts selected
UI elements being dropped on, and the trash mikinugget not only
accepts draggable UI elements but also erases them. However,
these three mikinuggets can be used independently.
Openness vs. blank page syndrome
As users of the system, it was not always clear what the next
obvious step could be. The system is very open, and thus at times
this very openness encourages ad-hoc activities, yet this could
leave a user at a loss what to do next. We still need users to design
the initial environment before co-evolution can take place.

We found MikiWiki to be very effective for tinkering. It is easy to
access something that works, clone it and tweak it into something
new that still works. Conversely, it is much harder to come up
with something new from scratch. To encourage cultures of
participation within MikiWiki, we should carefully plan the initial
environment, design rewards or incentives, foster public
commitment, establish clear contribution norms, and provide clear
mechanism for conflicts solving [48].
Levels of participation
Before designing MikiWiki, we perceived the three levels of
participation (meta-design, design and use) as being different
‘places’ within the HMS and with different users. During the
implementation we realized that they are not as much places as
modes of work. Users can now decide to create different
environments to carry out meta-design or design activities, but
this is not necessary. The meta-design, design and use modes can
coexist within the same environment and users can seamlessly
move between them, achieving higher levels of system
tailorability. Therefore, MikiWiki is both a development
environment and a collaborative environment. It also provides
users with a gentle learning curve and a high ceiling.
Page lookup mechanism
The practical difficulty of having to specify a full path for every
wikipage every time we referenced it inspired us to come up with
a relative lookup system for wiki pages. Whenever a resource is
referenced, MikiWiki looks it up starting from the immediate
environment, then proceeding to the containing environments.
The implication is that locally defined resources override globally
defined resources. This mechanism became the basis for the
mediation mechanism and creation of local configurability of
resources within a larger interconnected environment.
Mediation mechanism
The way we imagined the mediation mechanism to work has also
evolved. We started out imagining how an abstract shared object
could be materialized according to sets of rules depending on a
user role, culture and device in use. As we developed the system
we realized that these rules were cumbersome to express in
practice and that it was easier to allow mediation by exposing the
rendering mechanism to the users and then allowing different
environments to override the rendering mechanisms of the same
data page.
This greatly simplifies the system by making the mediation
mechanism socially based and removing the need for an explicit
representation of device role and culture within MikiWiki.

60

9. CONCLUSIONS
MikiWiki is a work-in-progress prototype to support and evaluate
the HMS model. MikiWiki brings diverse CoPs together to
participate in the design process, support their communication and
evolve all the system components as well as the communities
themselves.

We want to underline the importance of prototyping within the
model-building process. Developing and interacting with
MikiWiki changed and evolved the initial HMS concepts,
grounding them in real-world constraints and at the same time
opening up new design opportunities.

MikiWiki is not designed to be an environment for software
development, but rather as a shared environment where design
teams can communicate or write basic wiki style markup
language, using HTML as well as JavaScript to tailor the
communication and collaboration tools from within the shared
space.
The contribution of this work is to demonstrate the feasibility of
implementing the HMS model. MikiWiki combines the
functionalities of traditional wikis with EUD activities and meta-
design concepts, focused within the HMS conceptual framework.

In this context the boundary between system developers and users
is blurred, and there is no need to identify a final delivery or the
end users. Considering situated innovation emerging in local
contexts, MikiWiki aims to provide a just-enough infrastructure
based on under-design principles, which allows users to further
build, extend and develop their own environment.

The next step will be to apply MikiWiki to various use scenarios
and run usability tests to improve its functionality and to support
design teams with an iterative implementation process.

10. ACKNOWLEDGMENTS
The work of Li Zhu and Barbara Rita Barricelli is supported by
the Initial Training Network “Marie Curie Actions”, funded by the
FP 7 - People Programme with reference PITN-GA-2008-215446
entitled “DESIRE: Creative Design for Innovation in Science and
Technology.”

11. REFERENCES
[1] Kolbitsch, J. and Maurer, H. 2006. The Transformation of

the Web: How Emerging Communities Shape the
Information we Consume. J. Universal Computer Science
12(2), 187—213.

[2] Bourguin, G., Derycke, A. and Tarby, J.C. 2001. Beyond the
Interface: Co-evolution inside Interactive Systems - A
Proposal Founded on Activity Theory. In: Blandford, A.,
Vanderdonckt, J., Gray P. (eds.) Proc. of IHM-HCI 2001, pp.
297--310. Cépaduès-Éditions, Toulouse.

[3] Costabile, M.F., Fogli, D., Mussio, P. and Piccinno, A. 2007.
Visual Interactive Systems for End-User Development: A
Model-based Design Methodology. IEEE TSMCA 37(6),
1029—1046.

[4] Lieberman, H., Paternò, F., Klann, M. and Wulf, V. 2006.
End-User Development: An Emerging Paradigm. In:
Lieberman, H., Paternò, F., Wulf,V. (eds.) End User
Development, pp. 1--8. Springer, Dordrecht.

[5] Zhu, L., Mussio, P. and Barricelli, B.R. 2010. Hive-mind
space model for creative, collaborative design. In: Proc. of
DESIRE '10, Lancaster, UK, 121-130.

[6] Zhu, L., Barricelli, B.R. and Iacob, C. 2011. A Meta-design
Model for Creative Distributed Collaborative Design. IJDST,
2(4).

[7] Fischer, G. 2000. Social Creativity, Symmetry of Ignorance
and Meta-design. Knowledge-Based Systems Journal 13 (7-
8), 527--37

[8] Wenger, E. 1998 Communities of Practice. Learning,
Meaning, and Identity. Cambridge University Press,
Cambridge.

[9] Reenskaug, T.M.H, 2003. The Model-View-Controller
(MVC) - Its Past and Present. JavaZONE, Oslo.

[10] Barricelli, B.R., Marcante, A., Mussio, P., Parasiliti
Provenza, L., Valtolina, S. and Fresta. G. 2009. BANCO: a
Web architecture supporting unwitting end-user
development. IxD&A - Interaction Design & Architecture(s):
Design for the Future Experience, 5-6, 23--30

[11] Barricelli, B.R., Iacob, C. and Zhu, L. 2010. BANCO Web
Architecture to Support Global Collaborative Interaction
Design. In: Proc. of IWIPS 2010, pp. 159--162. P&SI.

[12] Andersen, R. and Mørch, A.I. 2009. Mutual Development: A
Case Study in Customer- Initiated Software Product
Development. In: Pipek, V., Rosson, M.B., de Ruyter, B.,
Wulf V. (eds.) Proc. of IS-EUD2009, pp. 31--49. Springer-
Verlag, Berlin.

[13] Star, S.L. and Griesemer, J.R. 1989. Translations and
Boundary Objects: Amateurs and Professionals in Berkley‟s
Museum of Vertebrate Zoology, 1907-1939. Social Studies
of Science 19(3), 387—420.

[14] Leuf, B. and Cunningham, W. 2001. The Wiki Way:
Collaboration and Sharing on the Internet. Addison-Wesley

[15] Schadewitz, N. and Zakaria, N. 2009. Cross-cultural
collaboration Wiki: evolving knowledge about international
teamwork. In: 2009 International Workshop on Intercultural
Collaboration (IWIC '09), Palo Alto, CA, USA, Feb 2009,
301-304.

[16] Krahn, R, Ingalls, D., Hirschfeld, R., Lincke J. and Palacz,
K. 2009. Lively Wiki: A development environment for
creating and sharing active web content, In: Proc. of
WikiSym '09, ACM Press, New York.

[17] Anslow, C. and Riehle, D. 2008. Towards End-User
Programming with Wikis. In WEUSE ’08: Proceedings of
the 4th international workshop on End-user software
engineering, pp. 61–65, New York, NY, USA.

[18] SnipSnap, http://www.snipsnap.org/
[19] XWiki, http://www.xwiki.org/xwiki/bin/view/Main/

[20] Taivalsaari, A., Mikkonen, T., Ingalls, D. and Palacz, K.
2008. Web Browser as an Application Platform: The Lively
Kernel Experience. Technical Report SMLI TR-2008-175,
Sun Microsystems.

[21] Correia, F., Ferreira, H., Flores, N. and Aguiar, A. 2009.
Incremental knowledge acquisition in software development
using a weakly-typed Wiki. In Proceedings of the 5th
International Symposium on Wikis and Open Collaboration
(WikiSym '09). ACM, New York, NY, USA, Article 31.

[22] Riehle, D. 2008. End-User Programming with Application
Wikis: A Panel with Ludovic Dubost, Stewart Nickolas, and
Peter Thoeny. In: Proc. of the 2008 International Symposium
on Wikis (WikiSym ‘08). ACM Press, New York.

61

[23] Ruby, http://ruby-lang.org/
[24] Sinatra, http://www.sinatrarb.com/
[25] jQuery, http://jquery.com/
[26] node.js, http://nodejs.org/

[27] MacLean, A., Carter, K., Lövstrand, L. and Moran, T. 1990.
User-tailorable Systems: Pressing the Issues with Buttons. In:
Proc. of CHI 90, pp. 175--182. ACM Press, New York.

[28] Dourish, P. 1995. Developing a Reflective Model of
Collaborative Systems. ACM Transactions on Computer-
Human Interaction 2(1), 40--63

[29] Greenberg, S. and Marwood, D. 1994. Real Time Groupware
as a Distributed System: Concurrency Control and its Effect
on the Interface. In: Proc. of CSCW 94, 207—217.

[30] Fischer, G. 2001. Communities of Interest: Learning through
the Interaction of Multiple Knowledge Systems. In:
Bjornestad, S., Moe, R., Morch, A., Opdahl A. (eds.) Proc. of
IRIS 2001, 1—14.

[31] Kirsh, D. 1995. The Intelligent Use of Space. Artif. Intell.,
73(1-2), 31—68.

[32] Engelbart, D.C. 1995. Toward augmenting the human
intellect and boosting our collective IQ. Commun. CACM
38(8), 30—32.

[33] Snow, C.P. 1993. The Two Cultures. Cambridge University
Press, Cambridge.

[34] Pariser, E. 2011. The Filter Bubble: What the Internet Is
Hiding from You. New York: Penguin Press HC.

[35] MockingBird, https://gomockingbird.com/
[36] Balsamiq, http://balsamiq.com/
[37] MockFlow, http://app.mockflow.com/
[38] LSL, http://wiki.secondlife.com/wiki/LSL_Portal

[39] Henderson, A. and Kyng, M. 1991. There's no place like
home: Continuing Design in Use. In: Design at work:
Cooperative Design of Computer Systems, pp. 219--240.
Lawrence Erlbaum Ass.

[40] Github, https://github.com/
[41] Could9, http://cloud9ide.com/
[42] jsFiddle, http://jsfiddle.net/
[43] Netvibes, http://tour.netvibes.com/overview.php
[44] Google App Engine,

http://www.google.com/enterprise/cloud/appengine/
[45] iGoogle, http://www.google.com/ig
[46] GoogleWave, https://wave.google.com
[47] Google Shared Spaces, http://sharedspaces.googlelabs.com/

[48] Grudin, J. and Erika Shehan Poole. 2010. Wikis at work:
success factors and challenges for sustainability of enterprise
Wikis. In Proceedings of the 6th International Symposium on
Wikis and Open Collaboration (WikiSym '10). ACM, New
York, NY, USA, Article 5, 8 pages.

62

